Health CLIP: Depression Rate Prediction Using Health Related Features in Satellite and Street View Images

计算机科学 卫星 萧条(经济学) 人工智能 计算机视觉 工程类 航空航天工程 经济 宏观经济学
作者
Tianjian Ouyang,Xin Zhang,Zhenyu Han,Yu Shang,Yong Li
标识
DOI:10.1145/3589335.3651451
摘要

Mental health is a state of mental well-being that enables people to cope with the stresses of life, realize their abilities, learn well and work well, and contribute to their community. It has intrinsic and instrumental value and is integral to our well-being, and its correlation with environmental factors has been a subject of growing interest. As the pressure of society keeps growing, depression has become a severe problem in modern cities, and finding a way to estimate depression rate is of significance to relieve the problem. In this study, we introduce a Contrastive Language-Image Pretraining (CLIP) based novel approach to predict mental health indicators, especially depression rate, through satellite and street view images. Our methodology uses state-of-the-art Multimodal Large Language Model (MLLM), GPT4-vision, to generate health related captions for satellite and street view images, then we use the generated image-text pairs to fine-tune the CLIP model, making its image encoder extract health related features such as green spaces, sports fields, and infrastructral characteristics. The fine-tuning process is employed to bridge the semantic gap between textual descriptions and visual representations, enabling a comprehensive analysis of geo-tagged images. Consequently, our methodology achieves a notable R2 value of 0.565 on prediction of depression rate in New York City with the combination of satellite and street view images. The successful deployment of Health CLIP in a real-world scenario underscores the practical applicability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
纯情的天奇完成签到 ,获得积分10
2秒前
顺利一德发布了新的文献求助10
3秒前
潇湘雪月发布了新的文献求助10
3秒前
3秒前
胡萝卜发布了新的文献求助10
4秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
汉堡包应助果粒多采纳,获得10
6秒前
10秒前
华仔发布了新的文献求助20
10秒前
10秒前
科研通AI2S应助杜杜采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
JK发布了新的文献求助10
13秒前
打打应助顺利一德采纳,获得10
14秒前
法外狂徒完成签到,获得积分10
15秒前
Orange应助十九岁的时差采纳,获得10
15秒前
科研通AI2S应助steam采纳,获得10
17秒前
潇湘雪月发布了新的文献求助10
17秒前
18秒前
青青子衿完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
crazy发布了新的文献求助10
23秒前
杜杜发布了新的文献求助10
24秒前
嗯嗯发布了新的文献求助10
25秒前
老大蒂亚戈完成签到,获得积分10
27秒前
宝安完成签到,获得积分10
31秒前
JamesPei应助动听的老鼠采纳,获得10
31秒前
31秒前
杨可言完成签到,获得积分10
31秒前
32秒前
32秒前
33秒前
Hello应助子非鱼采纳,获得10
34秒前
35秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136