已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Capturing the net ecosystem CO2 exchange dynamics of tidal wetlands with high spatiotemporal resolution by integrating process-based and machine learning estimations

湿地 环境科学 生态系统 过程(计算) 环境资源管理 生物气象学 水文学(农业) 生态学 计算机科学 地质学 天蓬 岩土工程 生物 操作系统
作者
Yuxin Lu,Ying Huang,Qingyu Jia,Yichun Xie
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:352: 110045-110045
标识
DOI:10.1016/j.agrformet.2024.110045
摘要

Accurate estimation of the net ecosystem CO2 exchange (NEE) at regional scales is of great significance for studying the carbon sink potential of coastal wetland ecosystems and their responses to global climate change. However, current NEE estimation methods are mainly developed for terrestrial ecosystems and are therefore unsuitable for NEE estimation with high spatiotemporal resolution estimation in coastal wetlands subjected to sub-daily tidal flooding. In this study, we proposed a high spatiotemporal resolution NEE estimation method for coastal marsh wetlands that properly considered tidal influence by combining the advantages of process-based modeling and machine learning. This method was verified and applied in the Changjiang estuary and Liaohe estuary marsh wetlands based on eddy covariance and environmental measurements, climate reanalysis data, and satellite images. The proposed method had good performance in the NEE estimation of tidal marsh wetlands, with Phragmites australis, Spartina alterniflora, and Suaeda salsa having coefficients of determination (R2) of 0.850, 0.676, and 0.658, respectively, and root mean square error (RMSE) values of 7.211 μmol m−2 s−1, 8.105 μmol m−2 s−1, and 0.109 μmol m−2 s−1, respectively. By integrating the tide level and salinity, the NEE estimation accuracy for each vegetation type was improved. The total annual NEE values of the Changjiang estuary and Liaohe estuary marsh wetlands in 2022 were estimated to be −0.297 and −0.444 Tg C yr−1, respectively. This study demonstrated that integrating process-based model and machine learning estimation can reliably capture the NEE dynamics of coastal wetlands, providing a useful tool to quantify coastal blue carbon potential with high spatiotemporal resolution at large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oi小鬼完成签到 ,获得积分10
2秒前
dingyh发布了新的文献求助10
2秒前
6秒前
敏敏完成签到,获得积分10
7秒前
李爱国应助guard采纳,获得10
7秒前
Captain完成签到,获得积分10
9秒前
怕黑道消完成签到 ,获得积分10
10秒前
11秒前
幽默尔蓉发布了新的文献求助10
13秒前
小萌猫完成签到,获得积分20
15秒前
白青发布了新的文献求助10
15秒前
18秒前
hms完成签到 ,获得积分10
19秒前
NexusExplorer应助kkkl采纳,获得10
20秒前
20秒前
JamesPei应助chuan采纳,获得10
22秒前
23秒前
lixuan发布了新的文献求助10
23秒前
wanci应助皮皮的鹿采纳,获得10
26秒前
Owen应助义气的黑夜采纳,获得10
26秒前
27秒前
东城傲雪发布了新的文献求助10
27秒前
所所应助1111chen采纳,获得10
27秒前
28秒前
28秒前
赵雪发布了新的文献求助10
31秒前
LiBo发布了新的文献求助10
32秒前
顾矜应助灵山剑侠采纳,获得10
32秒前
来兮发布了新的文献求助10
33秒前
ding应助热风采纳,获得10
35秒前
36秒前
36秒前
东城傲雪完成签到,获得积分20
39秒前
皮皮的鹿发布了新的文献求助10
41秒前
Ava应助粥粥粥粥粥采纳,获得10
42秒前
NexusExplorer应助原野小年采纳,获得10
42秒前
43秒前
自信的傲晴完成签到,获得积分10
44秒前
小萌猫发布了新的文献求助10
44秒前
ZT发布了新的文献求助10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801528
关于积分的说明 7845329
捐赠科研通 2459096
什么是DOI,文献DOI怎么找? 1308989
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727