Robust flight control and visual/radar-based indoor navigation for autonomous multicopters and their swarms

四轴飞行器 惯性测量装置 稳健性(进化) 计算机科学 不可用 工程类 里程计 实时计算 模拟 控制工程 机器人 移动机器人 人工智能 生物化学 化学 可靠性工程 基因 航空航天工程
作者
Yutao Jing
标识
DOI:10.17760/d20659781
摘要

This dissertation presents a comprehensive approach to addressing the challenges associated with the control and navigation of Unmanned Aerial Vehicles (UAVs), specifically focusing on robustness under GPS-denied, turbulent, and dark indoor conditions with various disturbances. Initial efforts involved designing and theoretically validating Sliding Mode Controllers (SMC) with Disturbance Observers using MATLAB/SIMULINK, optimized using offline Particle Swarm Optimization (PSO). In order to evaluate their performance, a lightweight simulator was developed to simulate both quadcopter and hexacopter configurations under the PX4 architecture. This simulator served to validate and compare the optimized SMC against PSO-optimized PID controllers. The results of these comparisons demonstrated the superior adaptability of the SMC, especially in environments characterized by significant sensor noise and disturbances. Subsequent practical indoor tests were conducted with real quadcopters, which provided additional verification of the robustness and reliability of the enhanced control theory with the actual UAVs under dynamic disturbances. To further evaluate the compatibility and adaptability of the SMC, this dissertation establishes a framework for interfacing with high-performance STMH7 chips, serving as the UAV microcontroller unit (MCU). This framework facilitates the connection of various sensors and provides guidance for constructing different quadcopter frames. Moreover, it enables the comparison of different flight controllers on distinct air-frames. Concurrently, the optimized SMC allows for remote dynamic parameter tuning during flight. In pursuit of improved localization capacity, the dissertation also explores the integration of an Intel Realsense D435i camera with an Inertial Measurement Unit (IMU) for Visual-Inertial Odometry (VIO) fusion within the Robot Operating System (ROS) environment. This integration employs an onboard companion computer for real-time VIO estimation and flight command. The effectiveness of the VIO algorithm is verified through both simulations and real-world experiments, highlighting its ability to enhance UAV localization and navigation. Additionally, a visual inertial odometry method for UAV Simultaneous Localization and Mapping (vSLAM) is tested and validated in both simulated and real drone environments. Furthermore, the dissertation introduces an innovative hybrid filtered multi-directional radar inertial odometry solution denoted as Hybrid-MRIO. This Error State Extended Kalman Filter (ES-EKF) based Radar Inertial Odometry (RIO) approach is implemented within the open-source PX4 autopilot system, enhancing UAV navigation accuracy and performance, and serves as a robust navigation alternative, particularly in challenging environments where traditional navigation systems prove ineffective, such as dark or smoky conditions. This solution integrates data from multiple software synchronized high-resolution Frequency-Modulated Continuous-Wave (FMCW) mmWave radars with an IMU. A subsequent 4D (x, y, z, doppler) mmWave radar SLAM (rSLAM) system has been developed, including three modules: front-end, loop detection module, and back-end. In the front-end, radar ego-velocity is utilized for states estimation and dynamic object removal, and a point cloud registration-based approach known as APDGICP (Adaptive Probability Distribution-GICP) is employed for keyframe detection. The loop detection module utilizes the intensity scan context to identify potential loop closure candidates. In the back-end, a pose graph is constructed, integrating RIO estimated odometry and identified loop closures for better localization. To develop fully-autonomous UAVs with their decision making modules, this dissertation details the development of a custom AI-powered fully-autonomous quadcopter equipped with companion computers and stereo IR cameras. Additionally, this dissertation discusses a swarm of small Unmanned Aerial Systems (SUAS) interconnected through a software-defined communications network. These drones demonstrated their capacity to independently/collaboratively execute a wide range of tasks, including target search, detection, identification, classification, tracking, and following, both in simulated and real-world scenarios. The system exhibits advanced collision avoidance capabilities and the ability to strategically respond to dynamic scenarios, such as changes in target behavior, highlighting its effectiveness in managing dynamic and challenging situations without the need for continuous human intervention.--Author's abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Mercury完成签到,获得积分10
5秒前
不停疯狂完成签到 ,获得积分10
6秒前
jie完成签到 ,获得积分10
9秒前
CJW完成签到 ,获得积分10
9秒前
我爱学习完成签到 ,获得积分10
11秒前
zz完成签到 ,获得积分10
14秒前
饱满含玉完成签到,获得积分10
15秒前
小巧谷波完成签到 ,获得积分10
16秒前
氟锑酸完成签到 ,获得积分10
16秒前
zh完成签到 ,获得积分10
22秒前
单薄沐夏完成签到 ,获得积分10
26秒前
小玲子完成签到 ,获得积分10
30秒前
芝诺的乌龟完成签到 ,获得积分0
38秒前
39秒前
ycw7777发布了新的文献求助10
42秒前
chenbin完成签到,获得积分10
43秒前
陈米花完成签到,获得积分10
48秒前
yyjl31完成签到,获得积分0
48秒前
Simon_chat完成签到,获得积分0
48秒前
48秒前
吐司炸弹完成签到,获得积分10
50秒前
mayfly完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
KinKrit完成签到 ,获得积分10
54秒前
霜降完成签到 ,获得积分10
59秒前
widesky777完成签到 ,获得积分0
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
做一只快乐的科研狗完成签到 ,获得积分10
1分钟前
leapper完成签到 ,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
惠_____完成签到 ,获得积分10
1分钟前
卡卡完成签到,获得积分10
2分钟前
沿途东行完成签到 ,获得积分10
2分钟前
那种完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003800
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477