Risk prediction for hydrogen sulfide emission based on sulfate-reducing bacteria in the water flooding oilfield

硫化氢 硫酸盐还原菌 物理 洪水(心理学) 水驱 硫酸盐 石油工程 环境化学 硫黄 冶金 化学 心理学 材料科学 量子力学 工程类 心理治疗师
作者
Hongyu Sun,Liguo Zhong,Yu Zhu,Jia‐Nan Zhu,Yangyang Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (5)
标识
DOI:10.1063/5.0210061
摘要

The water quality of the injection–production systems deteriorates as the water flooding oilfields are developed more deeply, and the content of sulfate-reducing bacteria (SRB) increases. Accordingly, hydrogen sulfide (H2S) emission related to SRB is intensified, which will arise safety and health problems. In order to investigate the effect of SRB on H2S emission in the water flooding oilfield, the contents of SRB and sulfide of the different nodes of a typical injection–production system of Daqing Oilfield were measured first, and then, H2S emission from water was simulated under different conditions. Consequently, a H2S emission prediction model was established based on Henry coefficient and the correlation between sulfide content and SRB content in the water. The measured sulfide contents were ranging from 0.25 to 6.34 mg/l, and the SRB contents were from 2.5 to 25 000 pcs/ml, and the highest SRB and sulfide contents were found in the settling tank. The correlation between sulfide content and SRB content was much remarkable, and the R2 value of the correlation analysis was 0.94. Henry coefficient of H2S emission was obtained from the simulated experiments under varied conditions such as sulfate content, oil content, and temperature. The established H2S emission prediction model was much reliable for predicting H2S emission for water flooding injection–production system, and the accuracy of the predicted H2S emission of four nodes of the injection–production system was larger than 95% compared to the measured results. This study provides theoretical guidance for predicting H2S emission risks in water flooding injection–production systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leeon完成签到,获得积分10
刚刚
李来仪完成签到,获得积分10
刚刚
打打应助unicornmed采纳,获得10
刚刚
Eddy发布了新的文献求助10
1秒前
体贴远山完成签到,获得积分10
2秒前
顾矜应助贤惠的正豪采纳,获得10
2秒前
2秒前
3秒前
无限的隶发布了新的文献求助10
3秒前
南木_完成签到,获得积分10
4秒前
笙歌自若完成签到,获得积分10
4秒前
4秒前
Akim应助江梦松采纳,获得10
4秒前
科研小民工应助认真的一刀采纳,获得200
5秒前
5秒前
猫樊完成签到,获得积分10
5秒前
hf完成签到,获得积分20
5秒前
灵明完成签到,获得积分10
5秒前
慕涔完成签到,获得积分10
6秒前
kingwill应助沐风采纳,获得30
6秒前
6秒前
陈龙完成签到,获得积分10
6秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Raymond应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
期刊应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762