Machine-learning-based asymptotic homogenisation and localisation of spatially varying multiscale configurations made of materials with nonlinear stress-strain relationships

非线性系统 均质化(气候) 应力-应变曲线 材料科学 压力(语言学) 拉伤 结构工程 生物系统 应用数学 计算机科学 机械 复合材料 数学 工程类 物理 变形(气象学) 生态学 语言学 哲学 生物多样性 内科学 生物 医学 量子力学
作者
Zhengcheng Zhou,Xiaoming Bai,Yuanqing Zhu
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
标识
DOI:10.1615/intjmultcompeng.2024052116
摘要

This article is aimed to propose a general method in support of efficient and reliable predictions of both the global and local behaviours of spatially-varying multiscale configurations made of materials bearing general nonlinear history-independent stress-strain relationships. The framework is developed based on a complementary approach that integrates asymptotic analysis with machine learning. The use of asymptotic analysis is to identify the homogenised constitutive relationship and the implicit relationships that link the local quantities of interest, say, the site where the maximum Von Mises stress lies, with other onsite mean-field quantities. As for the implementation of the proposed asymptotic formulation, the aforementioned relationships of interest are represented by neural networks using training data generated following a guideline resulting from asymptotic analysis. With the trained neural networks, the desired local behaviours can be quickly accessed at a homogenised level without explicitly resolving the microstructural configurations. The efficiency and accuracy of the proposed scheme are further demonstrated with numerical examples, and it is shown that even for fairly complex multiscale configurations, the predicting error can be maintained at a satisfactory level. Implication from the present study to speed up classical computational homogenisation schemes is also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh完成签到,获得积分10
刚刚
lwg发布了新的文献求助10
刚刚
曹志伟发布了新的文献求助10
1秒前
领导范儿应助田田采纳,获得10
2秒前
2秒前
闵夏完成签到,获得积分10
3秒前
酷酷以蓝完成签到,获得积分10
4秒前
4秒前
小青椒应助ZhouYW采纳,获得30
4秒前
4秒前
5秒前
7秒前
7秒前
7秒前
大模型应助墨琼琼采纳,获得10
8秒前
落后鞋垫发布了新的文献求助10
8秒前
yaco发布了新的文献求助10
9秒前
9秒前
qiang发布了新的文献求助10
9秒前
沉舟完成签到,获得积分10
10秒前
null发布了新的文献求助10
10秒前
祖难破完成签到,获得积分10
11秒前
深情安青应助汤圆和蛋卷采纳,获得10
12秒前
墨酒子完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
什聆发布了新的文献求助10
13秒前
echo完成签到 ,获得积分10
13秒前
13秒前
14秒前
尤有发布了新的文献求助10
14秒前
后山种仙草完成签到,获得积分10
14秒前
tang发布了新的文献求助10
15秒前
洋洋发布了新的文献求助10
16秒前
KAIDOHARA完成签到,获得积分10
16秒前
lee完成签到,获得积分10
16秒前
活泼红牛发布了新的文献求助10
16秒前
共享精神应助xiaosu采纳,获得10
16秒前
July完成签到 ,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639