化学
钙钛矿(结构)
铁电性
光伏系统
薄膜
凝聚态物理
光电子学
纳米技术
结晶学
电介质
物理
电气工程
工程类
材料科学
作者
Xudong Liu,Jie Tu,Yue‐Wen Fang,Guoqiang Xi,Hangren Li,Rong Wu,X. G. Liu,Dong-Fei Lu,Jiushe He,Junwei Zhang,Jianjun Tian,Linxing Zhang
摘要
Double perovskite films have been extensively studied for ferroelectric order, ferromagnetic order, and photovoltaic effects. The customized ion combinations and ordered ionic arrangements provide unique opportunities for bandgap engineering. Here, a synergistic strategy to induce chemical strain and charge compensation through inequivalent element substitution is proposed. A-site substitution of the barium ion is used to modify the chemical valence and defect density of the two B-site elements in Bi2FeMnO6 double perovskite epitaxial thin films. We dramatically increased the ferroelectric photovoltaic effect to ∼135.67 μA/cm2 from 30.62 μA/cm2, which is the highest in ferroelectric thin films with a thickness of less than 100 nm under white-light LED irradiation. More importantly, the ferroelectric polarization can effectively improve the photovoltaic efficiency of more than 5 times. High-resolution HAADF-STEM, synchrotron-based X-ray diffraction and absorption spectroscopy, and DFT calculations collectively demonstrate that inequivalent ion plays a dual role of chemical strain (+1.92 and −1.04 GPa) and charge balance, thereby introducing lattice distortion effects. The reduction of the oxygen vacancy density and the competing Jahn–Teller distortion of the oxygen octahedron are the main phenomena of the change in electron–orbital hybridization, which also leads to enhanced ferroelectric polarization values and optical absorption. The inequivalent strategy can be extended to other double perovskite systems and applied to other functional materials, such as photocatalysis for efficient defect control.
科研通智能强力驱动
Strongly Powered by AbleSci AI