Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer

医学 队列 接收机工作特性 癌症 肿瘤科 内科学 集合预报 随机森林 特征选择 人工智能 计算机科学
作者
Zhen Han,Zhicheng Zhang,Xianqi Yang,Zhe Li,Shengtian Sang,Md Tauhidul Islam,Alyssa A. Guo,Zihan Li,Sheng Wang,Jing Wang,Taojun Zhang,Zepang Sun,Lequan Yu,Sheng Wang,Wenjun Xiong,Guoxin Li,Yuming Jiang
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (5): e008927-e008927 被引量:4
标识
DOI:10.1136/jitc-2024-008927
摘要

Background Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). Methods This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model’s predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model’s predictions. Results Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. Conclusions Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
和谐山灵完成签到,获得积分20
2秒前
3秒前
鲁路修完成签到,获得积分10
3秒前
4秒前
嗒嗒完成签到,获得积分10
5秒前
小灯发布了新的文献求助10
5秒前
6秒前
斯文败类应助Ethan采纳,获得10
6秒前
脑洞疼应助GXJ采纳,获得10
6秒前
7秒前
孟伽娜发布了新的文献求助10
7秒前
所所应助Ceres采纳,获得10
9秒前
天天快乐应助lcxll采纳,获得10
9秒前
生动谷南发布了新的文献求助10
10秒前
11秒前
白熊完成签到,获得积分10
12秒前
13秒前
思源应助九九九采纳,获得10
13秒前
13秒前
14秒前
lizhi发布了新的文献求助10
14秒前
annie完成签到,获得积分10
15秒前
无花果应助奋斗的珍采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
Carhao应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
16秒前
情怀应助科研通管家采纳,获得10
16秒前
mslg33完成签到,获得积分10
16秒前
16秒前
16秒前
白熊发布了新的文献求助10
16秒前
miamia77应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得30
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
墨染八云完成签到,获得积分20
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233633
求助须知:如何正确求助?哪些是违规求助? 2880198
关于积分的说明 8214308
捐赠科研通 2547604
什么是DOI,文献DOI怎么找? 1377100
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623173