Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer

医学 队列 接收机工作特性 癌症 肿瘤科 内科学 集合预报 随机森林 特征选择 人工智能 计算机科学
作者
Zhen Han,Zhicheng Zhang,Xianqi Yang,Zhe Li,Shengtian Sang,Md Tauhidul Islam,Alyssa A. Guo,Zihan Li,Xiaoyan Wang,Jing Wang,Taojun Zhang,Zepang Sun,Lequan Yu,Wei Wang,Wenjun Xiong,Guoxin Li,Yuming Jiang
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (5): e008927-e008927 被引量:9
标识
DOI:10.1136/jitc-2024-008927
摘要

Background Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). Methods This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model’s predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model’s predictions. Results Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. Conclusions Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YaoHui发布了新的文献求助10
1秒前
attilio完成签到,获得积分10
3秒前
杳鸢应助飘逸鑫采纳,获得80
3秒前
默默衣完成签到 ,获得积分10
4秒前
无心的大侠完成签到 ,获得积分10
4秒前
MORNING发布了新的文献求助10
5秒前
5秒前
今后应助tjzhaoll采纳,获得10
5秒前
yznfly应助舒心的芝麻采纳,获得20
5秒前
5秒前
温冰雪应助Jankin采纳,获得10
6秒前
康凯完成签到,获得积分10
6秒前
斯文败类应助小鱼在学习采纳,获得10
6秒前
7秒前
8秒前
8秒前
大头不愁完成签到 ,获得积分10
8秒前
阴暗爬行完成签到,获得积分10
9秒前
王王王王发布了新的文献求助10
9秒前
wanci应助jiqipek采纳,获得30
9秒前
樟下客发布了新的文献求助10
10秒前
11秒前
11秒前
天佑小涛发布了新的文献求助10
11秒前
酷波er应助Nolan采纳,获得10
11秒前
12秒前
1zzz完成签到,获得积分10
12秒前
13秒前
Tuesma发布了新的文献求助10
13秒前
shanjianjie完成签到,获得积分20
13秒前
13秒前
ZWT发布了新的文献求助10
14秒前
ding应助乐生采纳,获得10
14秒前
16秒前
GUIGUI发布了新的文献求助10
16秒前
牧心24发布了新的文献求助20
17秒前
orixero应助布丁采纳,获得10
17秒前
伯赏浩天发布了新的文献求助10
17秒前
zwhy发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303