Ce-Doped Nanosheet as Visible Light Photocatalyst for the Photocatalytic Degradation of Tetracycline Hydrochloride

光催化 纳米片 盐酸四环素 降级(电信) 兴奋剂 可见光谱 四环素 材料科学 核化学 化学工程 光化学 化学 光电子学 纳米技术 催化作用 有机化学 计算机科学 电信 工程类 生物化学 抗生素
作者
Huabing Zhang,Wenxin Luo,Houxiang Sun,Haiyan Yang,Tao Yang,Dongqi Liu,Xuejun Zhu,Lihua Zhao,Mingyong Shu,Fengli Yang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (10): 11506-11517 被引量:13
标识
DOI:10.1021/acsanm.4c01096
摘要

In this paper, a facile and efficient photocatalytic system for tetracycline hydrochloride (TCH) degradation is proposed. Ce-doped Bi2WO6 (Ce–Bi2WO6) nanosheets rich in oxygen vacancies were synthesized using a simple hydrothermal method and were systematically characterized. The results exhibited that a 10% Ce–Bi2WO6 (BWCe-10) catalyst with thinner and curling nanosheets was rich in oxygen vacancies, and the band gap was narrowed from 2.78 eV (Bi2WO6) to 1.61 eV, which was conducive to enhancing the photocatalytic activity of BWCe-10. As expected, BWCe-10 nanosheets exhibited much higher photocatalytic performance with 61.1% degradation of TCH within 40 min due to the formation of oxygen vacancies. Moreover, the addition of H2O2 further enhanced the TCH degradation efficiency and yielded a removal rate of 90.4%, revealing a strong synergistic effect between oxygen vacancies and H2O2 in the BWCe-10/H2O2/light system. As an electron acceptor, H2O2 boosts the separation rate of the photogenerated carriers, thereby improving the photocatalytic activity. Furthermore, the potential applications of the BWCe-10 nanosheet in terms of the effect of coexisting ions, stability, and universality were investigated. In addition, possible degradation mechanisms and pathways were proposed. In this system, h+ and e– played important roles in TCH degradation and followed the sequence h+/e– > •O2– > •OH, and the formation of •OH and •O2– was proved by ESR analysis. This simulated sunlight-driven system offers insights into the degradation of organic contaminants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分20
刚刚
刚刚
星辰大海应助帅气绮露采纳,获得10
刚刚
刚刚
大个应助仁爱的野狼采纳,获得10
刚刚
SciGPT应助仁爱的野狼采纳,获得10
1秒前
lili666999发布了新的文献求助10
1秒前
1秒前
暮念完成签到,获得积分10
1秒前
1秒前
木头人完成签到,获得积分10
1秒前
xxiaojing完成签到,获得积分10
1秒前
韦恩发布了新的文献求助10
1秒前
BowieHuang应助阿浩采纳,获得30
2秒前
小草06发布了新的文献求助10
2秒前
2秒前
2秒前
RC_Wang发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
123完成签到,获得积分10
3秒前
小象腿完成签到,获得积分10
4秒前
4秒前
Quhang完成签到,获得积分10
5秒前
5秒前
6秒前
陈总发布了新的文献求助10
6秒前
Ava应助蕾蕾采纳,获得10
6秒前
6秒前
伶俐耷发布了新的文献求助10
7秒前
7秒前
7秒前
壑舟发布了新的文献求助10
7秒前
龙抬头发布了新的文献求助10
7秒前
JINtian发布了新的文献求助10
7秒前
8秒前
楠啵丸完成签到 ,获得积分10
8秒前
啊Q完成签到,获得积分20
8秒前
leo发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055