Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism

计算机科学 判别式 人工智能 相似性(几何) 机制(生物学) 机器学习 融合机制 深度学习 多层感知器 人工神经网络 融合 哲学 语言学 认识论 脂质双层融合 图像(数学)
作者
Wei Song,Lewen Xu,Chenguang Han,Zhen Tian,Quan Zou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (6) 被引量:1
标识
DOI:10.1093/bioinformatics/btae346
摘要

Abstract Motivation Accurately identifying the drug–target interactions (DTIs) is one of the crucial steps in the drug discovery and drug repositioning process. Currently, many computational-based models have already been proposed for DTI prediction and achieved some significant improvement. However, these approaches pay little attention to fuse the multi-view similarity networks related to drugs and targets in an appropriate way. Besides, how to fully incorporate the known interaction relationships to accurately represent drugs and targets is not well investigated. Therefore, there is still a need to improve the accuracy of DTI prediction models. Results In this study, we propose a novel approach that employs Multi-view similarity network fusion strategy and deep Interactive attention mechanism to predict Drug–Target Interactions (MIDTI). First, MIDTI constructs multi-view similarity networks of drugs and targets with their diverse information and integrates these similarity networks effectively in an unsupervised manner. Then, MIDTI obtains the embeddings of drugs and targets from multi-type networks simultaneously. After that, MIDTI adopts the deep interactive attention mechanism to further learn their discriminative embeddings comprehensively with the known DTI relationships. Finally, we feed the learned representations of drugs and targets to the multilayer perceptron model and predict the underlying interactions. Extensive results indicate that MIDTI significantly outperforms other baseline methods on the DTI prediction task. The results of the ablation experiments also confirm the effectiveness of the attention mechanism in the multi-view similarity network fusion strategy and the deep interactive attention mechanism. Availability and implementation https://github.com/XuLew/MIDTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zhangzhang采纳,获得10
刚刚
1秒前
1秒前
MiSD发布了新的文献求助10
1秒前
Ting完成签到 ,获得积分10
1秒前
xixixi完成签到,获得积分10
2秒前
yaolei发布了新的文献求助10
2秒前
3秒前
搜集达人应助Bioc采纳,获得10
3秒前
3秒前
Sissi完成签到 ,获得积分10
4秒前
爆米花应助549sysfzr采纳,获得10
4秒前
沈彬彬发布了新的文献求助20
5秒前
wr完成签到,获得积分20
5秒前
任梓宁发布了新的文献求助10
5秒前
5秒前
kame发布了新的文献求助10
6秒前
zjh完成签到,获得积分10
6秒前
8秒前
瓶子完成签到 ,获得积分10
8秒前
领导范儿应助ljpsjdsm采纳,获得10
8秒前
小王完成签到 ,获得积分10
9秒前
想要礼物的艾斯米拉达完成签到,获得积分10
10秒前
11秒前
11秒前
Jun应助任梓宁采纳,获得10
12秒前
12秒前
wjx发布了新的文献求助10
13秒前
MiSD完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
简单如容发布了新的文献求助10
14秒前
zhangzhang发布了新的文献求助10
14秒前
伊一完成签到,获得积分10
15秒前
求助完成签到,获得积分10
15秒前
medlive2020发布了新的文献求助10
15秒前
15秒前
en发布了新的文献求助10
15秒前
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012