Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism

计算机科学 判别式 人工智能 相似性(几何) 机制(生物学) 机器学习 融合机制 深度学习 多层感知器 人工神经网络 融合 哲学 语言学 认识论 脂质双层融合 图像(数学)
作者
Wei Song,Lewen Xu,Chenguang Han,Zhen Tian,Quan Zou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (6) 被引量:1
标识
DOI:10.1093/bioinformatics/btae346
摘要

Abstract Motivation Accurately identifying the drug–target interactions (DTIs) is one of the crucial steps in the drug discovery and drug repositioning process. Currently, many computational-based models have already been proposed for DTI prediction and achieved some significant improvement. However, these approaches pay little attention to fuse the multi-view similarity networks related to drugs and targets in an appropriate way. Besides, how to fully incorporate the known interaction relationships to accurately represent drugs and targets is not well investigated. Therefore, there is still a need to improve the accuracy of DTI prediction models. Results In this study, we propose a novel approach that employs Multi-view similarity network fusion strategy and deep Interactive attention mechanism to predict Drug–Target Interactions (MIDTI). First, MIDTI constructs multi-view similarity networks of drugs and targets with their diverse information and integrates these similarity networks effectively in an unsupervised manner. Then, MIDTI obtains the embeddings of drugs and targets from multi-type networks simultaneously. After that, MIDTI adopts the deep interactive attention mechanism to further learn their discriminative embeddings comprehensively with the known DTI relationships. Finally, we feed the learned representations of drugs and targets to the multilayer perceptron model and predict the underlying interactions. Extensive results indicate that MIDTI significantly outperforms other baseline methods on the DTI prediction task. The results of the ablation experiments also confirm the effectiveness of the attention mechanism in the multi-view similarity network fusion strategy and the deep interactive attention mechanism. Availability and implementation https://github.com/XuLew/MIDTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷的听兰完成签到,获得积分20
刚刚
刚刚
刚刚
1秒前
三里墩头发布了新的文献求助20
1秒前
顺利的机器猫完成签到 ,获得积分10
2秒前
123123发布了新的文献求助10
2秒前
2秒前
eachon发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
于鑫完成签到,获得积分10
2秒前
神奇小鹿完成签到,获得积分10
3秒前
3秒前
3秒前
Doo_lu发布了新的文献求助10
3秒前
脑洞疼应助星星boy采纳,获得10
4秒前
LOWRY发布了新的文献求助10
4秒前
4秒前
于鑫发布了新的文献求助10
5秒前
5秒前
孙素智发布了新的文献求助10
6秒前
6秒前
7秒前
Imogen发布了新的文献求助10
7秒前
meethaha发布了新的文献求助10
7秒前
天天快乐应助fanny采纳,获得10
8秒前
玄音发布了新的文献求助10
8秒前
李雯完成签到,获得积分20
9秒前
9秒前
9秒前
WWW关注了科研通微信公众号
10秒前
善学以致用应助hyhy采纳,获得10
10秒前
共享精神应助blueming采纳,获得10
10秒前
10秒前
深情安青应助于鑫采纳,获得10
10秒前
11秒前
小马甲应助Han采纳,获得10
11秒前
张家明关注了科研通微信公众号
11秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987