An efficient privacy-preserving and verifiable scheme for federated learning

可验证秘密共享 计算机科学 方案(数学) 联合学习 理论计算机科学 计算机安全 分布式计算 程序设计语言 集合(抽象数据类型) 数学分析 数学
作者
Xue Yang,Minjie Ma,Xiaohu Tang
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:160: 238-250 被引量:1
标识
DOI:10.1016/j.future.2024.06.002
摘要

As one of the most important methods of privacy computing, federated learning has attracted much attention as it makes data available but invisible (i.e., uploading gradients instead of raw data). However, adversaries may still recover some private information such as tabs, memberships or even training data, from gradients. Additionally, the malicious server may return the incorrect or forged aggregated result to clients for certain illegal interests. To ensure verifiability and privacy-preservation, in this paper, we present a verifiable secure aggregation scheme under the dual-server federated learning framework. Specifically, we combine the learning with error (LWE) cryptosystem with the secret sharing technique to guarantee the privacy of the aggregated result and each client's local gradient. Meanwhile, we skillfully design a double-verification protocol, including the server-side and client-side verification, to efficiently verify the correctness of the aggregated result and ensure data availability. Specifically, two servers mutually verify the correctness of the aggregated result through the linear homomorphic hash technique. After passing the server-side mutual verification, the malicious server may still directly broadcast the forged aggregated result to clients. Our client-side verification protocol can ensure data availability to identify the correct aggregation result sent by the semi-trusted server. To the best of our knowledge, existing solutions do not take data availability into account. Extensive experimental comparisons with the state-of-the-art schemes demonstrate the effectiveness and efficiency of the proposed scheme in terms of accuracy, computational cost and communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangchao1880发布了新的文献求助10
1秒前
Ava应助junyang采纳,获得10
1秒前
2秒前
2秒前
龙俊利发布了新的文献求助10
3秒前
4秒前
理综完成签到,获得积分10
5秒前
6秒前
完美世界应助Stanley采纳,获得10
6秒前
6秒前
顺利的梦菲完成签到 ,获得积分10
7秒前
bc完成签到,获得积分10
7秒前
清爽柠檬应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得50
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
佳佳应助科研通管家采纳,获得10
9秒前
悄悄发布了新的文献求助10
9秒前
李爱国应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
junyang发布了新的文献求助10
11秒前
11秒前
所所应助Danaus采纳,获得10
11秒前
Lin发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
Cookie完成签到,获得积分20
16秒前
岁月静好完成签到,获得积分20
17秒前
情怀应助Norzing采纳,获得10
17秒前
ZGZ123发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
小马甲应助顺利的夜梦采纳,获得10
19秒前
记忆等于零完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371