An efficient privacy-preserving and verifiable scheme for federated learning

可验证秘密共享 计算机科学 方案(数学) 联合学习 理论计算机科学 计算机安全 分布式计算 程序设计语言 集合(抽象数据类型) 数学 数学分析
作者
Xue Yang,Minjie Ma,Xiaohu Tang
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:160: 238-250 被引量:8
标识
DOI:10.1016/j.future.2024.06.002
摘要

As one of the most important methods of privacy computing, federated learning has attracted much attention as it makes data available but invisible (i.e., uploading gradients instead of raw data). However, adversaries may still recover some private information such as tabs, memberships or even training data, from gradients. Additionally, the malicious server may return the incorrect or forged aggregated result to clients for certain illegal interests. To ensure verifiability and privacy-preservation, in this paper, we present a verifiable secure aggregation scheme under the dual-server federated learning framework. Specifically, we combine the learning with error (LWE) cryptosystem with the secret sharing technique to guarantee the privacy of the aggregated result and each client's local gradient. Meanwhile, we skillfully design a double-verification protocol, including the server-side and client-side verification, to efficiently verify the correctness of the aggregated result and ensure data availability. Specifically, two servers mutually verify the correctness of the aggregated result through the linear homomorphic hash technique. After passing the server-side mutual verification, the malicious server may still directly broadcast the forged aggregated result to clients. Our client-side verification protocol can ensure data availability to identify the correct aggregation result sent by the semi-trusted server. To the best of our knowledge, existing solutions do not take data availability into account. Extensive experimental comparisons with the state-of-the-art schemes demonstrate the effectiveness and efficiency of the proposed scheme in terms of accuracy, computational cost and communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Ava应助州府十三采纳,获得10
1秒前
俞兴达发布了新的文献求助10
1秒前
1秒前
wjx发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
李长安完成签到,获得积分10
2秒前
机灵书雪发布了新的文献求助10
2秒前
angelinazh完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
mahaha发布了新的文献求助10
4秒前
overcome发布了新的文献求助10
4秒前
Tourist应助饭团采纳,获得10
5秒前
5秒前
000200发布了新的文献求助10
6秒前
6秒前
零琳发布了新的文献求助10
6秒前
小周周完成签到 ,获得积分10
6秒前
田様应助annie采纳,获得10
7秒前
7秒前
连大脸发布了新的文献求助30
8秒前
seko发布了新的文献求助10
8秒前
科研通AI6应助campus采纳,获得10
8秒前
充电宝应助lxy采纳,获得10
9秒前
9秒前
10秒前
所所应助kalman采纳,获得10
10秒前
10秒前
10秒前
丘比特应助harmory采纳,获得30
11秒前
踏实平彤完成签到,获得积分10
12秒前
12秒前
科研通AI5应助Sonny采纳,获得10
12秒前
州府十三完成签到,获得积分10
13秒前
13秒前
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113903
求助须知:如何正确求助?哪些是违规求助? 4321280
关于积分的说明 13464996
捐赠科研通 4152777
什么是DOI,文献DOI怎么找? 2275420
邀请新用户注册赠送积分活动 1277450
关于科研通互助平台的介绍 1215482