亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient privacy-preserving and verifiable scheme for federated learning

可验证秘密共享 计算机科学 方案(数学) 联合学习 理论计算机科学 计算机安全 分布式计算 程序设计语言 集合(抽象数据类型) 数学分析 数学
作者
Xue Yang,Minjie Ma,Xiaohu Tang
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:160: 238-250 被引量:8
标识
DOI:10.1016/j.future.2024.06.002
摘要

As one of the most important methods of privacy computing, federated learning has attracted much attention as it makes data available but invisible (i.e., uploading gradients instead of raw data). However, adversaries may still recover some private information such as tabs, memberships or even training data, from gradients. Additionally, the malicious server may return the incorrect or forged aggregated result to clients for certain illegal interests. To ensure verifiability and privacy-preservation, in this paper, we present a verifiable secure aggregation scheme under the dual-server federated learning framework. Specifically, we combine the learning with error (LWE) cryptosystem with the secret sharing technique to guarantee the privacy of the aggregated result and each client's local gradient. Meanwhile, we skillfully design a double-verification protocol, including the server-side and client-side verification, to efficiently verify the correctness of the aggregated result and ensure data availability. Specifically, two servers mutually verify the correctness of the aggregated result through the linear homomorphic hash technique. After passing the server-side mutual verification, the malicious server may still directly broadcast the forged aggregated result to clients. Our client-side verification protocol can ensure data availability to identify the correct aggregation result sent by the semi-trusted server. To the best of our knowledge, existing solutions do not take data availability into account. Extensive experimental comparisons with the state-of-the-art schemes demonstrate the effectiveness and efficiency of the proposed scheme in terms of accuracy, computational cost and communication overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣辣完成签到,获得积分10
刚刚
安详的面包完成签到,获得积分10
1秒前
3秒前
fml发布了新的文献求助10
4秒前
8秒前
梅者如西完成签到,获得积分10
16秒前
18秒前
江枫渔火完成签到 ,获得积分10
27秒前
33秒前
44秒前
49秒前
ceeray23应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
57秒前
Yuanyuan发布了新的文献求助10
1分钟前
yexu发布了新的文献求助10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
大胆的伟宸完成签到,获得积分10
1分钟前
1分钟前
yexu完成签到,获得积分10
1分钟前
星辰大海应助大胆的伟宸采纳,获得10
1分钟前
qinghongmeng完成签到 ,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
虚心依白发布了新的文献求助10
2分钟前
平淡的翅膀完成签到,获得积分10
2分钟前
2分钟前
2分钟前
521完成签到,获得积分20
2分钟前
麻辣香锅发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
liutao应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650884
求助须知:如何正确求助?哪些是违规求助? 4781901
关于积分的说明 15052691
捐赠科研通 4809656
什么是DOI,文献DOI怎么找? 2572449
邀请新用户注册赠送积分活动 1528505
关于科研通互助平台的介绍 1487448