Optimizing the mechanical performance of A356–Sc–Sr alloy via combining machine learning and mechanical stirring under vacuum

材料科学 合金 机械工程 冶金 复合材料 工程类
作者
Shuai Pan,Jingming Zheng,Yu Wang,Minqiang Gao,Ying Fu,Renguo Guan
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:212: 114011-114011
标识
DOI:10.1016/j.matchar.2024.114011
摘要

In this study, a machine learning design system (MLDS) with a property-oriented optimization strategy was first established to predict the mechanical properties of the A356 alloys with adding Sc and Sr elements. Based on the experimental verification from the MLDS, the addition of 0.2 wt% Sc and 0.067 wt% Sr elements led to the refinement of α-Al grains and eutectic Si phases. Then, the vacuum–stirring was introduced to obtain the semi-solid microstructure of the A356–0.2Sc–0.067Sr alloy. The α-Al grains displayed the spherical morphology and the reduction in pores helped improve the mechanical properties of the alloy. In addition, the effects of stirring time and stirring temperature on the microstructure and mechanical properties of the alloy were investigated. The results demonstrated that the α-Al grains of the alloy were further spheroidized, resulting in the improved mechanical properties. The ultimate tensile strength and elongation of the alloy were 220 MPa and 6.0%, respectively, which were increased by 16.8% and 26.7% in comparison to those of the alloy without vacuum–stirring. The aim of this work is to provide a new method to prepare high-performance A356 alloy through composition design and microstructural control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的可乐完成签到,获得积分10
1秒前
bkagyin应助明亮不乐采纳,获得10
1秒前
小蘑菇应助Mine采纳,获得10
1秒前
clientprogram应助72采纳,获得20
1秒前
2秒前
小小脸完成签到,获得积分20
3秒前
3秒前
共享精神应助liguanyu1078采纳,获得10
3秒前
苏灿完成签到,获得积分10
3秒前
啊饭完成签到,获得积分10
4秒前
水上书完成签到,获得积分10
4秒前
搜集达人应助LFJ采纳,获得10
5秒前
S先生完成签到,获得积分10
5秒前
5秒前
XIN完成签到,获得积分20
5秒前
JamesPei应助明亮的凝琴采纳,获得10
5秒前
笑笑丶不爱笑完成签到,获得积分10
5秒前
Liu完成签到,获得积分10
5秒前
小小脸发布了新的文献求助30
6秒前
温言完成签到,获得积分10
6秒前
彭于晏应助Nangong采纳,获得10
7秒前
寻梦完成签到,获得积分10
8秒前
ZHY发布了新的文献求助10
8秒前
科研乞讨专员完成签到,获得积分10
8秒前
邬不污完成签到,获得积分10
8秒前
夏天完成签到,获得积分10
8秒前
Owen应助yao采纳,获得10
8秒前
郝田田完成签到,获得积分10
9秒前
10秒前
11秒前
流子完成签到,获得积分10
12秒前
12秒前
wyfyq完成签到,获得积分10
12秒前
13秒前
Key发布了新的文献求助10
13秒前
大模型应助xiaxianong采纳,获得30
13秒前
14秒前
Kalimba完成签到,获得积分10
15秒前
hff发布了新的文献求助10
15秒前
ybdx完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479