Data-Driven Online-Merge-Offline Teaching for New Employee Training of State Grid

计算机科学 可扩展性 合并(版本控制) 在线和离线 网格 适应性 知识管理 多媒体 数据库 几何学 数学 操作系统 生态学 生物 情报检索
作者
H.M. Zhang,G.H. Liu,Weijie Chen,Yanheng Zhao,Ziyu Li,N. C. Wang,Jingwei Li
标识
DOI:10.1145/3660043.3660082
摘要

In the era of digital transformation, organizations are seeking innovative approaches to enhance employee training effectiveness. This study proposes a data-driven online-merge-offline teaching method for new employee training at State Grid, aiming to optimize the learning experience and accelerate knowledge retention. The proposed approach combines digital platforms and traditional offline training methods to create a comprehensive training program. Leveraging advanced data analytics techniques, learner data is collected and analyzed to identify individual strengths and weaknesses, enabling customized training content delivery. Online modules provide employees with interactive multimedia resources, including video lectures, simulations, and quizzes, fostering self-paced learning and engagement. Real-time monitoring enables trainers to track learners' progress and provide timely feedback and support. Offline components, such as workshops and group discussions, facilitate collaboration, problem-solving, and practical application of knowledge. Through a seamless combination of online and offline activities, employees can reinforce their learning and acquire hands-on skills. Moreover, the data-driven approach allows trainers to continually evaluate training effectiveness and make necessary adjustments based on learner performance analysis. This iterative process ensures the optimization of training outcomes. Preliminary results indicate that the data-driven online-merge-offline teaching method has significantly improved the efficiency and effectiveness of new employee training at State Grid. Enhanced engagement, personalized learning experiences, and practical skill development contribute to a skilled workforce. Future research could explore the scalability and adaptability of this approach in other industries and organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张又蓝完成签到,获得积分10
刚刚
Dana完成签到 ,获得积分10
刚刚
王青青完成签到,获得积分20
1秒前
1秒前
Ava应助1234采纳,获得10
2秒前
3秒前
double ting发布了新的文献求助20
4秒前
slz发布了新的文献求助10
4秒前
ding应助徐佳乐采纳,获得10
5秒前
5秒前
大模型应助自由路采纳,获得10
6秒前
lx33101128发布了新的文献求助10
6秒前
FreeRice发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
wanci应助嗯qq采纳,获得10
7秒前
8秒前
赘婿应助十月采纳,获得10
9秒前
curtisness应助Lycerdoctor采纳,获得10
9秒前
9秒前
ymr发布了新的文献求助30
9秒前
shinysparrow应助1351567822采纳,获得50
10秒前
11秒前
yy发布了新的文献求助10
11秒前
11秒前
Maestro_S发布了新的文献求助10
12秒前
清爽灰狼发布了新的文献求助10
13秒前
13秒前
Jasper应助hanlanx采纳,获得10
14秒前
废寝忘食发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
kkkkk完成签到,获得积分10
15秒前
smrsmr完成签到,获得积分10
15秒前
15秒前
1234发布了新的文献求助10
16秒前
嗯qq完成签到,获得积分10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655