CAC-YOLOv8: Real-Time Bearing Defect Detection based on channel attenuation and expanded receptive field strategy

衰减 方位(导航) 领域(数学) 频道(广播) 声学 计算机科学 物理 人工智能 光学 电信 数学 纯数学
作者
Bushi Liu,Yue Zhao,Bo-Lun Chen,Chen Yu,Kurng Y. Chang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad4fb6
摘要

Abstract Bearing defect detection plays a crucial role in the intelligent production of chemical transmission equipment, where timely identification and handling of defective bearings are essential. However, in practical large-scale industrial production, product surface defects are often complex, diverse, and exhibit significant variations in appearance, posing severe challenges to the discriminative ability and detection efficiency of bearing defect detection algorithms. This paper proposes a real-time bearing surface defect detection algorithm, CAC-YOLOv8, which designs the Channel Attenuation Network (CAN) and Compound Pooling Pyramid Spatial Pyramid Pooling Fast (CPPSPPF) structure. Specifically, the model introduces the Channel Attenuation Network to achieve parallel feature extraction, deep feature processing, and feature fusion under different channel numbers, capturing critical features related to bearing defects and thereby improving computational efficiency. Subsequently, based on the concept of overlapped receptive fields, a CPPSPPF structure is constructed, utilizing multiple iterations of max-pooling operations with smaller pooling kernel sizes to prevent information loss while expanding the receptive field, thereby strengthening the capturing ability of features at different scales. The experimental results indicate that the proposed CAC-YOLOv8 bearing surface defect detection algorithm, compared to the YOLOv8 model, achieved a 0.3% improvement in mAP@0.5, reduced model size by 14.4%, and enhanced model inference speed by 33.3%. This enables the CAC-YOLOv8 model to significantly improve the real-time performance of bearing defect detection while maintaining high-precision detection. The performance in practical industrial detection demonstrates that the proposed approach has achieved outstanding results in both speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌藏鸟完成签到,获得积分10
1秒前
JY发布了新的文献求助10
2秒前
2秒前
呃呃发布了新的文献求助10
4秒前
4秒前
海潮发布了新的文献求助10
5秒前
科研文献搬运工举报求助违规成功
7秒前
whatever举报求助违规成功
7秒前
罗_举报求助违规成功
7秒前
7秒前
陶ni吉吉完成签到,获得积分10
7秒前
8秒前
左一酱完成签到 ,获得积分10
8秒前
8秒前
wen发布了新的文献求助10
9秒前
WQY完成签到,获得积分10
10秒前
努力发布了新的文献求助10
10秒前
打打应助JY采纳,获得10
10秒前
英姑应助chaoqi采纳,获得10
11秒前
歪歪象留下了新的社区评论
12秒前
12秒前
EVAN完成签到,获得积分10
12秒前
贪玩的可乐完成签到 ,获得积分10
13秒前
华仔应助笑嘻嘻采纳,获得10
14秒前
汉堡包应助jieshipingan采纳,获得10
14秒前
15秒前
共享精神应助ys采纳,获得10
16秒前
xiyu666完成签到 ,获得积分10
16秒前
欧阳孤风完成签到,获得积分20
17秒前
xecbouwbcou完成签到,获得积分20
17秒前
星辰大海发布了新的文献求助10
18秒前
丰富的龙猫完成签到,获得积分10
19秒前
WQY发布了新的文献求助10
20秒前
21秒前
柔弱的树叶完成签到,获得积分10
21秒前
22秒前
Pipper发布了新的文献求助10
23秒前
Cris完成签到,获得积分10
24秒前
24秒前
JY完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159701
求助须知:如何正确求助?哪些是违规求助? 2810654
关于积分的说明 7888962
捐赠科研通 2469692
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012