CAC-YOLOv8: Real-Time Bearing Defect Detection based on channel attenuation and expanded receptive field strategy

衰减 方位(导航) 领域(数学) 频道(广播) 声学 计算机科学 物理 人工智能 光学 电信 数学 纯数学
作者
Bushi Liu,Yue Zhao,Bo-Lun Chen,Cuiying Yu,K. Y. Chang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096004-096004 被引量:2
标识
DOI:10.1088/1361-6501/ad4fb6
摘要

Abstract Bearing defect detection plays a crucial role in the intelligent production of chemical transmission equipment, where timely identification and handling of defective bearings are essential. However, in practical large-scale industrial production, product surface defects are often complex, diverse, and exhibit significant variations in appearance, posing severe challenges to the discriminative ability and detection efficiency of bearing defect detection algorithms. This paper proposes a real-time bearing surface defect detection algorithm, CAC-YOLOv8, which designs the Channel Attenuation Network (CAN) and Compound Pooling Pyramid Spatial Pyramid Pooling Fast (CPPSPPF) structure. Specifically, the model introduces the Channel Attenuation Network to achieve parallel feature extraction, deep feature processing, and feature fusion under different channel numbers, capturing critical features related to bearing defects and thereby improving the inference speed. Subsequently, based on the concept of overlapped receptive fields, a CPPSPPF structure is constructed, utilizing multiple iterations of max-pooling operations with smaller pooling kernel sizes to prevent information loss while expanding the receptive field, thereby strengthening the capturing ability of features at different scales. The experimental results indicate that the proposed CAC-YOLOv8 bearing surface defect detection algorithm, compared to the YOLOv8 model, achieved a 0.3% improvement in mAP@0.5, reduced model size by 14.4%, and enhanced model inference speed by 33.3%. This enables the CAC-YOLOv8 model to significantly improve the real-time performance of bearing defect detection while maintaining high-precision detection. The performance in practical industrial detection demonstrates that the proposed approach has achieved outstanding results in both speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
perfumei发布了新的文献求助30
刚刚
wwhh发布了新的文献求助10
1秒前
远山完成签到 ,获得积分10
1秒前
szmsnail完成签到,获得积分10
2秒前
常昕琦完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
水水水水发布了新的文献求助10
3秒前
Lucas应助aibing采纳,获得10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
fishuae发布了新的文献求助10
5秒前
shining发布了新的文献求助10
5秒前
5秒前
5秒前
复杂易形发布了新的文献求助10
5秒前
帅哥发布了新的文献求助10
6秒前
Hunter发布了新的文献求助10
6秒前
南海子完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
lucky发布了新的文献求助10
9秒前
9秒前
9秒前
冷酷的水壶完成签到,获得积分10
10秒前
我是老大应助千早爱音采纳,获得10
10秒前
今后应助白蹄乌采纳,获得10
10秒前
王者之师完成签到,获得积分10
10秒前
张淼发布了新的文献求助10
11秒前
太叔捕发布了新的文献求助10
11秒前
易二三完成签到,获得积分10
11秒前
猪突猛进发布了新的文献求助10
11秒前
12秒前
欣慰友梅发布了新的文献求助10
12秒前
12秒前
白浅河关注了科研通微信公众号
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594