CAC-YOLOv8: Real-Time Bearing Defect Detection based on channel attenuation and expanded receptive field strategy

衰减 方位(导航) 领域(数学) 频道(广播) 声学 计算机科学 物理 人工智能 光学 电信 数学 纯数学
作者
Bushi Liu,Yue Zhao,Bo-Lun Chen,Cuiying Yu,K. Y. Chang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096004-096004 被引量:2
标识
DOI:10.1088/1361-6501/ad4fb6
摘要

Abstract Bearing defect detection plays a crucial role in the intelligent production of chemical transmission equipment, where timely identification and handling of defective bearings are essential. However, in practical large-scale industrial production, product surface defects are often complex, diverse, and exhibit significant variations in appearance, posing severe challenges to the discriminative ability and detection efficiency of bearing defect detection algorithms. This paper proposes a real-time bearing surface defect detection algorithm, CAC-YOLOv8, which designs the Channel Attenuation Network (CAN) and Compound Pooling Pyramid Spatial Pyramid Pooling Fast (CPPSPPF) structure. Specifically, the model introduces the Channel Attenuation Network to achieve parallel feature extraction, deep feature processing, and feature fusion under different channel numbers, capturing critical features related to bearing defects and thereby improving the inference speed. Subsequently, based on the concept of overlapped receptive fields, a CPPSPPF structure is constructed, utilizing multiple iterations of max-pooling operations with smaller pooling kernel sizes to prevent information loss while expanding the receptive field, thereby strengthening the capturing ability of features at different scales. The experimental results indicate that the proposed CAC-YOLOv8 bearing surface defect detection algorithm, compared to the YOLOv8 model, achieved a 0.3% improvement in mAP@0.5, reduced model size by 14.4%, and enhanced model inference speed by 33.3%. This enables the CAC-YOLOv8 model to significantly improve the real-time performance of bearing defect detection while maintaining high-precision detection. The performance in practical industrial detection demonstrates that the proposed approach has achieved outstanding results in both speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccx完成签到,获得积分10
1秒前
Caroline完成签到,获得积分10
2秒前
zhangxiaoqing完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
笨笨静竹发布了新的文献求助10
3秒前
3秒前
SCI来关注了科研通微信公众号
4秒前
踏实松鼠完成签到 ,获得积分10
4秒前
Frank完成签到 ,获得积分10
4秒前
Lucas应助wanghb616采纳,获得10
6秒前
艾泽拉斯的囚徒完成签到,获得积分10
7秒前
7秒前
娜娜完成签到 ,获得积分10
7秒前
7秒前
不知道完成签到,获得积分0
7秒前
7秒前
活力的珊完成签到 ,获得积分10
7秒前
Jasin完成签到,获得积分10
7秒前
dfswf完成签到 ,获得积分10
8秒前
duoduo完成签到,获得积分10
8秒前
Yolen LI完成签到,获得积分0
8秒前
ming830完成签到,获得积分10
8秒前
leclerc完成签到,获得积分10
8秒前
瀼瀼完成签到,获得积分10
8秒前
李小二完成签到,获得积分10
9秒前
DCC完成签到,获得积分10
9秒前
阿巴阿巴完成签到,获得积分20
10秒前
ytzhang0587应助wuyanzu采纳,获得20
10秒前
10秒前
33完成签到,获得积分10
10秒前
吉吉国王完成签到,获得积分10
10秒前
易章关注了科研通微信公众号
11秒前
刘星宇发布了新的文献求助10
11秒前
G_G完成签到,获得积分10
11秒前
李静发布了新的文献求助10
12秒前
ddd完成签到 ,获得积分10
12秒前
平常冬天完成签到,获得积分10
12秒前
勤劳冰烟完成签到,获得积分10
12秒前
13秒前
zombleq完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349