ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans

计算机科学 分割 人工智能 变压器 医学 放射科 工程类 电气工程 电压
作者
Jiajie Ou,Linfeng Jiang,Ting Bai,Peidong Zhan,Ruihua Liu,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108625-108625 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108625
摘要

Liver segmentation is a fundamental prerequisite for the diagnosis and surgical planning of hepatocellular carcinoma. Traditionally, the liver contour is drawn manually by radiologists using a slice-by-slice method. However, this process is time-consuming and error-prone, depending on the radiologist's experience. In this paper, we propose a new end-to-end automatic liver segmentation framework, named ResTransUNet, which exploits the transformer's ability to capture global context for remote interactions and spatial relationships, as well as the excellent performance of the original U-Net architecture. The main contribution of this paper lies in proposing a novel fusion network that combines Unet and Transformer architectures. In the encoding structure, a dual-path approach is utilized, where features are extracted separately using both convolutional neural networks (CNNs) and Transformer networks. Additionally, an effective feature enhancement unit is designed to transfer the global features extracted by the Transformer network to the CNN for feature enhancement. This model aims to address the drawbacks of traditional Unet-based methods, such as feature loss during encoding and poor capture of global features. Moreover, it avoids the disadvantages of pure Transformer models, which suffer from large parameter sizes and high computational complexity. The experimental results on the LiTS2017 dataset demonstrate remarkable performance for our proposed model, with Dice coefficients, volumetric overlap error (VOE), and relative volume difference (RVD) values for liver segmentation reaching 0.9535, 0.0804, and -0.0007, respectively. Furthermore, to further validate the model's generalization capability, we conducted tests on the 3Dircadb, Chaos, and Sliver07 datasets. The experimental results demonstrate that the proposed method outperforms other closely related models with higher liver segmentation accuracy. In addition, significant improvements can be achieved by applying our method when handling liver segmentation with small and discontinuous liver regions, as well as blurred liver boundaries. The code is available at the website: https://github.com/Jouiry/ResTransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助阿冰采纳,获得10
刚刚
Zoom完成签到,获得积分10
2秒前
1111发布了新的文献求助20
2秒前
上官若男应助自觉馒头采纳,获得10
2秒前
2秒前
2秒前
5秒前
hongshiyi发布了新的文献求助10
5秒前
6秒前
Ganlou应助HC采纳,获得10
7秒前
65neko完成签到 ,获得积分10
7秒前
无花果应助HC采纳,获得20
7秒前
Star发布了新的文献求助10
7秒前
8秒前
手工猫完成签到,获得积分10
9秒前
852应助整齐的曼安采纳,获得10
9秒前
一往而深完成签到,获得积分10
9秒前
肖恩发布了新的文献求助10
10秒前
11秒前
hongshiyi完成签到,获得积分20
12秒前
13秒前
13秒前
NIGANSHA完成签到 ,获得积分10
14秒前
15秒前
Ava应助刘洋采纳,获得10
15秒前
66发布了新的文献求助10
15秒前
HC3完成签到 ,获得积分10
16秒前
iiiorange完成签到,获得积分10
17秒前
飞翔的霸天哥应助福瑞灯采纳,获得30
18秒前
Jasper应助虎虎虎采纳,获得10
18秒前
陶醉的夜绿完成签到,获得积分10
19秒前
John完成签到,获得积分10
19秒前
简单成仁发布了新的文献求助10
19秒前
顾矜应助xuezhao采纳,获得10
20秒前
20秒前
伶俐绿柏发布了新的文献求助10
20秒前
pollen06完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299726
求助须知:如何正确求助?哪些是违规求助? 2934627
关于积分的说明 8469883
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424065
科研通“疑难数据库(出版商)”最低求助积分说明 661818
邀请新用户注册赠送积分活动 645574