亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans

计算机科学 分割 人工智能 变压器 医学 放射科 工程类 电气工程 电压
作者
Jiajie Ou,Linfeng Jiang,Ting Bai,Peidong Zhan,Ruihua Liu,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108625-108625 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108625
摘要

Liver segmentation is a fundamental prerequisite for the diagnosis and surgical planning of hepatocellular carcinoma. Traditionally, the liver contour is drawn manually by radiologists using a slice-by-slice method. However, this process is time-consuming and error-prone, depending on the radiologist's experience. In this paper, we propose a new end-to-end automatic liver segmentation framework, named ResTransUNet, which exploits the transformer's ability to capture global context for remote interactions and spatial relationships, as well as the excellent performance of the original U-Net architecture. The main contribution of this paper lies in proposing a novel fusion network that combines Unet and Transformer architectures. In the encoding structure, a dual-path approach is utilized, where features are extracted separately using both convolutional neural networks (CNNs) and Transformer networks. Additionally, an effective feature enhancement unit is designed to transfer the global features extracted by the Transformer network to the CNN for feature enhancement. This model aims to address the drawbacks of traditional Unet-based methods, such as feature loss during encoding and poor capture of global features. Moreover, it avoids the disadvantages of pure Transformer models, which suffer from large parameter sizes and high computational complexity. The experimental results on the LiTS2017 dataset demonstrate remarkable performance for our proposed model, with Dice coefficients, volumetric overlap error (VOE), and relative volume difference (RVD) values for liver segmentation reaching 0.9535, 0.0804, and -0.0007, respectively. Furthermore, to further validate the model's generalization capability, we conducted tests on the 3Dircadb, Chaos, and Sliver07 datasets. The experimental results demonstrate that the proposed method outperforms other closely related models with higher liver segmentation accuracy. In addition, significant improvements can be achieved by applying our method when handling liver segmentation with small and discontinuous liver regions, as well as blurred liver boundaries. The code is available at the website: https://github.com/Jouiry/ResTransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝芝完成签到 ,获得积分20
27秒前
59秒前
kuoping完成签到,获得积分0
1分钟前
1分钟前
1分钟前
山亭应助苹果诗珊采纳,获得20
1分钟前
2分钟前
所所应助叫滚滚采纳,获得10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
叫滚滚发布了新的文献求助10
2分钟前
drirshad完成签到,获得积分10
2分钟前
是各种蕉完成签到,获得积分10
2分钟前
过时的笙发布了新的文献求助10
3分钟前
3分钟前
3分钟前
fabius0351完成签到 ,获得积分10
4分钟前
poser完成签到,获得积分10
4分钟前
4分钟前
Raven发布了新的文献求助10
4分钟前
Raven完成签到,获得积分10
4分钟前
zzz完成签到,获得积分10
4分钟前
indec发布了新的文献求助10
4分钟前
indec完成签到,获得积分10
5分钟前
5分钟前
美孩儿完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Ava应助执着的夜春采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
6分钟前
在水一方应助科研通管家采纳,获得10
6分钟前
研友_VZG7GZ应助朴实的鸡采纳,获得10
7分钟前
7分钟前
余成风完成签到,获得积分10
7分钟前
朴实的鸡发布了新的文献求助10
7分钟前
xiaoqian完成签到,获得积分10
7分钟前
9分钟前
吱吱吱吱发布了新的文献求助10
9分钟前
冷傲半邪完成签到,获得积分10
10分钟前
彭于晏应助G.Huang采纳,获得10
10分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335570
求助须知:如何正确求助?哪些是违规求助? 4473282
关于积分的说明 13921478
捐赠科研通 4367605
什么是DOI,文献DOI怎么找? 2399680
邀请新用户注册赠送积分活动 1392767
关于科研通互助平台的介绍 1364151