ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans

计算机科学 分割 人工智能 变压器 医学 放射科 工程类 电气工程 电压
作者
Jiajie Ou,Linfeng Jiang,Ting Bai,Peidong Zhan,Ruihua Liu,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108625-108625 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108625
摘要

Liver segmentation is a fundamental prerequisite for the diagnosis and surgical planning of hepatocellular carcinoma. Traditionally, the liver contour is drawn manually by radiologists using a slice-by-slice method. However, this process is time-consuming and error-prone, depending on the radiologist's experience. In this paper, we propose a new end-to-end automatic liver segmentation framework, named ResTransUNet, which exploits the transformer's ability to capture global context for remote interactions and spatial relationships, as well as the excellent performance of the original U-Net architecture. The main contribution of this paper lies in proposing a novel fusion network that combines Unet and Transformer architectures. In the encoding structure, a dual-path approach is utilized, where features are extracted separately using both convolutional neural networks (CNNs) and Transformer networks. Additionally, an effective feature enhancement unit is designed to transfer the global features extracted by the Transformer network to the CNN for feature enhancement. This model aims to address the drawbacks of traditional Unet-based methods, such as feature loss during encoding and poor capture of global features. Moreover, it avoids the disadvantages of pure Transformer models, which suffer from large parameter sizes and high computational complexity. The experimental results on the LiTS2017 dataset demonstrate remarkable performance for our proposed model, with Dice coefficients, volumetric overlap error (VOE), and relative volume difference (RVD) values for liver segmentation reaching 0.9535, 0.0804, and -0.0007, respectively. Furthermore, to further validate the model's generalization capability, we conducted tests on the 3Dircadb, Chaos, and Sliver07 datasets. The experimental results demonstrate that the proposed method outperforms other closely related models with higher liver segmentation accuracy. In addition, significant improvements can be achieved by applying our method when handling liver segmentation with small and discontinuous liver regions, as well as blurred liver boundaries. The code is available at the website: https://github.com/Jouiry/ResTransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
berrycute发布了新的文献求助10
刚刚
yangjoy发布了新的文献求助10
1秒前
ahui发布了新的文献求助10
3秒前
3秒前
Kikua完成签到,获得积分10
3秒前
沈清酌完成签到,获得积分20
4秒前
Lilili发布了新的文献求助10
4秒前
5秒前
沈清酌发布了新的文献求助10
7秒前
科研通AI2S应助berrycute采纳,获得10
7秒前
7秒前
汉堡包应助小阳采纳,获得10
7秒前
7秒前
易子完成签到 ,获得积分10
7秒前
8秒前
rookiefcb发布了新的文献求助30
8秒前
10秒前
Hello应助bingbing采纳,获得10
11秒前
。。。发布了新的文献求助10
11秒前
李爱国应助hancahngxiao采纳,获得10
12秒前
张耀文发布了新的文献求助10
12秒前
12秒前
二掌柜发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
wanci应助YYY采纳,获得10
15秒前
16秒前
17秒前
田様应助无私的凌丝采纳,获得10
17秒前
橙子发布了新的文献求助10
17秒前
H2CO3发布了新的文献求助10
18秒前
18秒前
19秒前
跳跃的笑白完成签到,获得积分10
20秒前
星辰大海应助ahui采纳,获得10
20秒前
20秒前
桃花不换酒完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014