Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork

转录组 钥匙(锁) 基因 生物 计算生物学 遗传学 基因表达 生态学
作者
Wen Yang,Liming Hou,Binbin Wang,Jian Wu,Chengwan Zha,Wangjun Wu
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae164
摘要

Abstract Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein–protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可靠sue完成签到,获得积分10
1秒前
dzdzn3完成签到 ,获得积分20
1秒前
zjh发布了新的文献求助10
1秒前
yu_z完成签到 ,获得积分10
1秒前
上官若男应助韭菜盒子采纳,获得10
1秒前
细腻晓露完成签到,获得积分10
1秒前
大吴克发布了新的文献求助10
2秒前
饱满的煎饼完成签到,获得积分10
2秒前
dzdzn3关注了科研通微信公众号
2秒前
KING完成签到,获得积分10
3秒前
seventonight2完成签到,获得积分10
3秒前
顾矜应助xwc采纳,获得10
3秒前
Relax发布了新的文献求助10
3秒前
微笑的语梦完成签到 ,获得积分10
4秒前
落寞的紫山完成签到,获得积分10
4秒前
杨大大发布了新的文献求助10
4秒前
BOSSJING完成签到,获得积分10
4秒前
Jasper应助搞怪的人龙采纳,获得10
5秒前
5秒前
benj完成签到,获得积分10
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
周老八发布了新的文献求助10
5秒前
5秒前
小杨爱吃羊完成签到 ,获得积分10
5秒前
lszhw完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
美好乌龟完成签到 ,获得积分10
6秒前
6秒前
烟雨行舟完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助刘星星采纳,获得30
8秒前
赘婿应助顺利水杯采纳,获得10
8秒前
8秒前
明亮的溪灵完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740