Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork

转录组 钥匙(锁) 基因 生物 计算生物学 遗传学 基因表达 生态学
作者
Wen Yang,Liming Hou,Binbin Wang,Jian Wu,Chengwan Zha,Wangjun Wu
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae164
摘要

Abstract Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein–protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
画个圈圈恋上荣应助少年采纳,获得10
刚刚
刚刚
1秒前
CipherSage应助周悠悠采纳,获得10
1秒前
哒哒哒发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
qym发布了新的文献求助10
6秒前
6秒前
知愈完成签到,获得积分10
6秒前
gyacgbjd完成签到,获得积分10
6秒前
7秒前
小鱼同学发布了新的文献求助10
7秒前
丘比特应助兜有米采纳,获得10
7秒前
充电宝应助烂漫的草莓采纳,获得10
8秒前
小目完成签到,获得积分10
8秒前
HY发布了新的文献求助10
9秒前
AMM发布了新的文献求助10
9秒前
大胆笑翠完成签到,获得积分10
9秒前
彭于晏应助breath采纳,获得10
9秒前
完美的天空应助dalong采纳,获得10
9秒前
辞镜发布了新的文献求助10
10秒前
10秒前
kkkwang2完成签到,获得积分10
11秒前
CipherSage应助安雯采纳,获得20
11秒前
12秒前
爆米花应助李呀采纳,获得10
12秒前
12秒前
Ava应助Catalysis123采纳,获得10
12秒前
12秒前
13秒前
小蘑菇应助三三采纳,获得20
14秒前
15秒前
香蕉觅云应助HY采纳,获得10
15秒前
WSY发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助开心的幻柏采纳,获得10
17秒前
哇咔咔发布了新的文献求助10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344