CNN Pre-Trained Model Using the Fusion of Features for CBIR Framework

计算机科学 人工智能 融合 模式识别(心理学) 哲学 语言学
作者
Kanchan Wangi,Aziz Makandar
标识
DOI:10.1109/raeeucci61380.2024.10547952
摘要

In the era of abundant digital imagery, efficient retrieval of relevant images has become crucial for various applications, including multimedia content management and image analysis. Content-Based Image Retrieval (CBIR) have emerged as a promising solution, leveraging advanced techniques to automatically retrieve images based on their visual content. This research work, proposed a novel CBIR system which exploits the extracted features of fusion from pre-trained model of Convolutional Neural Network (CNN). CNNs have demonstrated remarkable capabilities in learning hierarchical representations of visual features, making them well-suited for image retrieval tasks. By leveraging the rich feature representations learned by a pre-trained CNN, our framework aims to enhance the retrieval accuracy and robustness. We employ techniques for feature fusion to integrate diverse visual cues captured by different layers of the CNN, thus enabling a more comprehensive representation of image content. Furthermore, we proposed methodology which extract the features from two well -known pre-trained CNN like, VGG16 and ResNet50 model. Similarity measurement to effectively match query images with the database. Experimental evaluations conducted on benchmark datasets demonstrate the efficiency of the proposed framework in achieving superior retrieval performance compared to conventional methods. The results underscore the potential of leveraging pre-trained CNN models and feature fusion techniques to advance the state-of-the-art in CBIR systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gi完成签到,获得积分10
刚刚
1秒前
沐阳发布了新的文献求助30
2秒前
Adax完成签到,获得积分20
2秒前
崔老师完成签到,获得积分10
2秒前
2秒前
3秒前
ZJX应助wsx采纳,获得10
3秒前
3秒前
木谦发布了新的文献求助10
4秒前
文艺向松完成签到,获得积分10
4秒前
fen发布了新的文献求助10
4秒前
5秒前
matrixu完成签到,获得积分10
5秒前
DWQ发布了新的文献求助10
6秒前
潇洒平凡发布了新的文献求助30
6秒前
6秒前
大方的百川完成签到,获得积分20
6秒前
6秒前
7秒前
HuangXintong完成签到,获得积分20
7秒前
papa完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
gi发布了新的文献求助10
8秒前
9秒前
Hello应助leaf采纳,获得10
9秒前
9秒前
快乐的妙菱完成签到,获得积分10
10秒前
灵巧大地完成签到,获得积分10
10秒前
zl完成签到,获得积分10
10秒前
lemmon完成签到,获得积分10
11秒前
忧郁老头完成签到,获得积分10
11秒前
懒羊羊发布了新的文献求助10
11秒前
芋泥发布了新的文献求助10
12秒前
ys完成签到,获得积分0
12秒前
12秒前
thesea完成签到,获得积分20
12秒前
Rin发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609