CNN Pre-Trained Model Using the Fusion of Features for CBIR Framework

计算机科学 人工智能 融合 模式识别(心理学) 哲学 语言学
作者
Kanchan Wangi,Aziz Makandar
标识
DOI:10.1109/raeeucci61380.2024.10547952
摘要

In the era of abundant digital imagery, efficient retrieval of relevant images has become crucial for various applications, including multimedia content management and image analysis. Content-Based Image Retrieval (CBIR) have emerged as a promising solution, leveraging advanced techniques to automatically retrieve images based on their visual content. This research work, proposed a novel CBIR system which exploits the extracted features of fusion from pre-trained model of Convolutional Neural Network (CNN). CNNs have demonstrated remarkable capabilities in learning hierarchical representations of visual features, making them well-suited for image retrieval tasks. By leveraging the rich feature representations learned by a pre-trained CNN, our framework aims to enhance the retrieval accuracy and robustness. We employ techniques for feature fusion to integrate diverse visual cues captured by different layers of the CNN, thus enabling a more comprehensive representation of image content. Furthermore, we proposed methodology which extract the features from two well -known pre-trained CNN like, VGG16 and ResNet50 model. Similarity measurement to effectively match query images with the database. Experimental evaluations conducted on benchmark datasets demonstrate the efficiency of the proposed framework in achieving superior retrieval performance compared to conventional methods. The results underscore the potential of leveraging pre-trained CNN models and feature fusion techniques to advance the state-of-the-art in CBIR systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不爱池鱼应助冰柠采纳,获得10
1秒前
yt完成签到 ,获得积分10
1秒前
Oooo发布了新的文献求助10
1秒前
1秒前
万能图书馆应助liutianbao采纳,获得10
2秒前
正直夏波发布了新的文献求助50
2秒前
晴天发布了新的文献求助10
3秒前
4秒前
深情安青应助JAMA兜里揣采纳,获得10
6秒前
华仔应助Ming采纳,获得10
6秒前
晓语丫完成签到,获得积分10
6秒前
英姑应助顺心寄文采纳,获得10
7秒前
QL完成签到,获得积分10
7秒前
Aurora发布了新的文献求助10
7秒前
8秒前
顾矜应助齐新采纳,获得10
8秒前
9秒前
10秒前
西风驿马完成签到,获得积分10
10秒前
阿后发布了新的文献求助10
10秒前
xyy完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12545完成签到,获得积分10
12秒前
虚幻道罡完成签到,获得积分10
12秒前
13秒前
14秒前
曾阿牛发布了新的文献求助10
14秒前
14秒前
Charles发布了新的文献求助10
15秒前
chen发布了新的文献求助10
15秒前
12545发布了新的文献求助30
16秒前
fanpengzhen完成签到,获得积分10
16秒前
小马甲应助外向谷菱采纳,获得10
17秒前
18秒前
18秒前
罗小小发布了新的文献求助10
18秒前
wzppp发布了新的文献求助10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298078
求助须知:如何正确求助?哪些是违规求助? 2933093
关于积分的说明 8462019
捐赠科研通 2606096
什么是DOI,文献DOI怎么找? 1422811
科研通“疑难数据库(出版商)”最低求助积分说明 661522
邀请新用户注册赠送积分活动 644850