亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CNN Pre-Trained Model Using the Fusion of Features for CBIR Framework

计算机科学 人工智能 融合 模式识别(心理学) 语言学 哲学
作者
Kanchan Wangi,Aziz Makandar
标识
DOI:10.1109/raeeucci61380.2024.10547952
摘要

In the era of abundant digital imagery, efficient retrieval of relevant images has become crucial for various applications, including multimedia content management and image analysis. Content-Based Image Retrieval (CBIR) have emerged as a promising solution, leveraging advanced techniques to automatically retrieve images based on their visual content. This research work, proposed a novel CBIR system which exploits the extracted features of fusion from pre-trained model of Convolutional Neural Network (CNN). CNNs have demonstrated remarkable capabilities in learning hierarchical representations of visual features, making them well-suited for image retrieval tasks. By leveraging the rich feature representations learned by a pre-trained CNN, our framework aims to enhance the retrieval accuracy and robustness. We employ techniques for feature fusion to integrate diverse visual cues captured by different layers of the CNN, thus enabling a more comprehensive representation of image content. Furthermore, we proposed methodology which extract the features from two well -known pre-trained CNN like, VGG16 and ResNet50 model. Similarity measurement to effectively match query images with the database. Experimental evaluations conducted on benchmark datasets demonstrate the efficiency of the proposed framework in achieving superior retrieval performance compared to conventional methods. The results underscore the potential of leveraging pre-trained CNN models and feature fusion techniques to advance the state-of-the-art in CBIR systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
11秒前
科研通AI6.1应助993494543采纳,获得10
22秒前
27秒前
优美的莹芝完成签到,获得积分10
41秒前
科研通AI2S应助信陵君无忌采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
古古怪界丶黑大帅完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
993494543发布了新的文献求助10
2分钟前
993494543完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
爆米花应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
eeevaxxx完成签到 ,获得积分10
3分钟前
852应助安青兰采纳,获得10
3分钟前
3分钟前
4分钟前
安青兰发布了新的文献求助10
4分钟前
4分钟前
Feng完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
lanxinyue发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
mkeale完成签到,获得积分10
5分钟前
5分钟前
5分钟前
花卷卷发布了新的文献求助10
5分钟前
5分钟前
玉荣完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134