CNN Pre-Trained Model Using the Fusion of Features for CBIR Framework

计算机科学 人工智能 融合 模式识别(心理学) 语言学 哲学
作者
Kanchan Wangi,Aziz Makandar
标识
DOI:10.1109/raeeucci61380.2024.10547952
摘要

In the era of abundant digital imagery, efficient retrieval of relevant images has become crucial for various applications, including multimedia content management and image analysis. Content-Based Image Retrieval (CBIR) have emerged as a promising solution, leveraging advanced techniques to automatically retrieve images based on their visual content. This research work, proposed a novel CBIR system which exploits the extracted features of fusion from pre-trained model of Convolutional Neural Network (CNN). CNNs have demonstrated remarkable capabilities in learning hierarchical representations of visual features, making them well-suited for image retrieval tasks. By leveraging the rich feature representations learned by a pre-trained CNN, our framework aims to enhance the retrieval accuracy and robustness. We employ techniques for feature fusion to integrate diverse visual cues captured by different layers of the CNN, thus enabling a more comprehensive representation of image content. Furthermore, we proposed methodology which extract the features from two well -known pre-trained CNN like, VGG16 and ResNet50 model. Similarity measurement to effectively match query images with the database. Experimental evaluations conducted on benchmark datasets demonstrate the efficiency of the proposed framework in achieving superior retrieval performance compared to conventional methods. The results underscore the potential of leveraging pre-trained CNN models and feature fusion techniques to advance the state-of-the-art in CBIR systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenSH发布了新的文献求助10
刚刚
晓军完成签到,获得积分20
刚刚
qww发布了新的文献求助10
1秒前
burningzmz完成签到,获得积分10
1秒前
平淡夏山关注了科研通微信公众号
1秒前
8R60d8完成签到,获得积分0
3秒前
科研通AI5应助笨笨钢笔采纳,获得30
3秒前
3秒前
4秒前
美丽迎梦完成签到 ,获得积分10
4秒前
4秒前
4秒前
lalala发布了新的文献求助10
5秒前
5秒前
zlf完成签到,获得积分10
5秒前
HEIKU应助林狗采纳,获得10
5秒前
bkagyin应助刘陶采纳,获得10
6秒前
6秒前
CipherSage应助qww采纳,获得10
6秒前
burningzmz发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
gao完成签到,获得积分10
7秒前
8秒前
hhhbbb发布了新的文献求助20
8秒前
LeoChris发布了新的文献求助10
9秒前
9秒前
9秒前
birdy发布了新的文献求助10
10秒前
慕青应助听说采纳,获得10
10秒前
10秒前
11秒前
今后应助袁睿韬采纳,获得10
11秒前
鸣鸣发布了新的文献求助30
11秒前
JF123_发布了新的文献求助10
12秒前
小白兔发布了新的文献求助10
12秒前
刘陶完成签到,获得积分10
12秒前
SciGPT应助小北笙er采纳,获得10
13秒前
乔万仇发布了新的文献求助20
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059