CNN Pre-Trained Model Using the Fusion of Features for CBIR Framework

计算机科学 人工智能 融合 模式识别(心理学) 语言学 哲学
作者
Kanchan Wangi,Aziz Makandar
标识
DOI:10.1109/raeeucci61380.2024.10547952
摘要

In the era of abundant digital imagery, efficient retrieval of relevant images has become crucial for various applications, including multimedia content management and image analysis. Content-Based Image Retrieval (CBIR) have emerged as a promising solution, leveraging advanced techniques to automatically retrieve images based on their visual content. This research work, proposed a novel CBIR system which exploits the extracted features of fusion from pre-trained model of Convolutional Neural Network (CNN). CNNs have demonstrated remarkable capabilities in learning hierarchical representations of visual features, making them well-suited for image retrieval tasks. By leveraging the rich feature representations learned by a pre-trained CNN, our framework aims to enhance the retrieval accuracy and robustness. We employ techniques for feature fusion to integrate diverse visual cues captured by different layers of the CNN, thus enabling a more comprehensive representation of image content. Furthermore, we proposed methodology which extract the features from two well -known pre-trained CNN like, VGG16 and ResNet50 model. Similarity measurement to effectively match query images with the database. Experimental evaluations conducted on benchmark datasets demonstrate the efficiency of the proposed framework in achieving superior retrieval performance compared to conventional methods. The results underscore the potential of leveraging pre-trained CNN models and feature fusion techniques to advance the state-of-the-art in CBIR systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏东方完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
SION完成签到,获得积分10
2秒前
LeungYM完成签到 ,获得积分10
2秒前
2秒前
lhy完成签到,获得积分10
3秒前
3秒前
3秒前
研途发布了新的文献求助10
3秒前
安宁完成签到 ,获得积分10
4秒前
QJYKKK完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
耶喽小黄发布了新的文献求助10
7秒前
GUOGUO完成签到 ,获得积分10
8秒前
李宗洋完成签到,获得积分10
8秒前
xueshu发布了新的文献求助30
9秒前
dove00发布了新的文献求助10
9秒前
烟花应助椰子味冰淇淋采纳,获得10
9秒前
传奇3应助靳韩羽采纳,获得10
10秒前
kk55完成签到,获得积分10
10秒前
12秒前
NN发布了新的文献求助30
12秒前
小乔应助michael采纳,获得10
12秒前
ZOE应助9699采纳,获得50
12秒前
jasmineee完成签到 ,获得积分10
13秒前
Twonej给丫丫的求助进行了留言
13秒前
rumor发布了新的文献求助10
13秒前
Jasper应助跳跃小伙采纳,获得100
14秒前
wanwuzhumu发布了新的文献求助10
14秒前
小劉同志关注了科研通微信公众号
14秒前
林夕完成签到 ,获得积分10
14秒前
柔弱的老三完成签到 ,获得积分10
14秒前
15秒前
CadoreK完成签到 ,获得积分10
15秒前
landy完成签到 ,获得积分10
16秒前
舒心幻竹完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812