亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images

计算机科学 卷积神经网络 光学相干层析成像 人工智能 模式识别(心理学) 计算机视觉 医学 眼科
作者
Ayoub Laouarem,Chafia Kara-Mohamed,El‐Bay Bourennane,Aboubekeur Hamdi-Cherif
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108726-108726 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108726
摘要

Retinal diseases are among nowadays major public health issues, deservedly needing advanced computer-aided diagnosis. We propose a hybrid model for multi label classification, whereby seven retinal diseases are automatically classified from Optical Coherence Tomography (OCT) images. We show that, by combining the strengths of Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs), we can produce a more powerful type of model for medical image classification, especially when considering local lesion information such as retinal diseases. CNNs are indeed proved to be efficient at parameter utilization and provide the ability to extract local features and multi-scale feature maps through convolutional operations. On the other hand, ViT's self-attention procedure allows processing long-range and global dependencies within an image. The paper clearly shows that the hybridization of these complementary capabilities (CNNs-ViTs) presents a high image processing potential that is more robust and efficient. The proposed model adopts a hierarchical CNN module called Convolutional Patch and Token Embedding (CPTE) instead of employing a direct tokenization approach using the raw input OCT image in the transformer. The CPTE module's role is to incorporate an inductive bias, to reduce the reliance on large-scale datasets, and to address the low-level feature extraction challenges of the ViT. In addition, considering the importance of local lesion information in OCT images, the model relies on a parallel module called Residual Depthwise-Pointwise ConvNet (RDP-ConvNet) for extracting high-level features. RDP-ConvNet utilizes depthwise and pointwise convolution layers within a residual network architecture. The overall performance of the HTC-Retina model was evaluated on three datasets: the OCT-2017, OCT-C8, and OCT-2014 ; outperforming previous established models, achieving accuracy rates of 99.40%, 97.00%, and 99.77%, respectively ; and sensitivity rates of 99.41%, 97.00%, and 99.77%, respectively. Notably, the model showed high performance while maintaining computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的霸发布了新的文献求助10
11秒前
失眠的霸完成签到,获得积分10
23秒前
38秒前
1分钟前
秀丽的香旋完成签到,获得积分20
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
JamesPei应助tian采纳,获得10
1分钟前
mashibeo完成签到,获得积分10
1分钟前
DD完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
阿治完成签到 ,获得积分0
3分钟前
3分钟前
阿克图尔斯·蒙斯克完成签到,获得积分10
3分钟前
科研通AI5应助含蓄尔竹采纳,获得10
3分钟前
3分钟前
含蓄尔竹发布了新的文献求助10
3分钟前
4分钟前
zp6666tql完成签到 ,获得积分10
4分钟前
柠檬完成签到,获得积分10
5分钟前
zhangwj226完成签到,获得积分10
5分钟前
adkdad完成签到,获得积分10
5分钟前
sailingluwl完成签到,获得积分10
5分钟前
5分钟前
隐形曼青应助秀丽的香旋采纳,获得10
5分钟前
JamesPei应助罗静采纳,获得10
5分钟前
6分钟前
罗静发布了新的文献求助10
6分钟前
30关注了科研通微信公众号
6分钟前
勤奋的天蓝完成签到,获得积分10
6分钟前
6分钟前
30发布了新的文献求助10
6分钟前
罗静完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
宋丽薇完成签到,获得积分10
7分钟前
8分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280611
关于积分的说明 10020100
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648