HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images

计算机科学 卷积神经网络 光学相干层析成像 人工智能 模式识别(心理学) 计算机视觉 医学 眼科
作者
Ayoub Laouarem,Chafia Kara-Mohamed,El‐Bay Bourennane,Aboubekeur Hamdi-Cherif
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108726-108726 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108726
摘要

Retinal diseases are among nowadays major public health issues, deservedly needing advanced computer-aided diagnosis. We propose a hybrid model for multi label classification, whereby seven retinal diseases are automatically classified from Optical Coherence Tomography (OCT) images. We show that, by combining the strengths of Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs), we can produce a more powerful type of model for medical image classification, especially when considering local lesion information such as retinal diseases. CNNs are indeed proved to be efficient at parameter utilization and provide the ability to extract local features and multi-scale feature maps through convolutional operations. On the other hand, ViT's self-attention procedure allows processing long-range and global dependencies within an image. The paper clearly shows that the hybridization of these complementary capabilities (CNNs-ViTs) presents a high image processing potential that is more robust and efficient. The proposed model adopts a hierarchical CNN module called Convolutional Patch and Token Embedding (CPTE) instead of employing a direct tokenization approach using the raw input OCT image in the transformer. The CPTE module's role is to incorporate an inductive bias, to reduce the reliance on large-scale datasets, and to address the low-level feature extraction challenges of the ViT. In addition, considering the importance of local lesion information in OCT images, the model relies on a parallel module called Residual Depthwise-Pointwise ConvNet (RDP-ConvNet) for extracting high-level features. RDP-ConvNet utilizes depthwise and pointwise convolution layers within a residual network architecture. The overall performance of the HTC-Retina model was evaluated on three datasets: the OCT-2017, OCT-C8, and OCT-2014 ; outperforming previous established models, achieving accuracy rates of 99.40%, 97.00%, and 99.77%, respectively ; and sensitivity rates of 99.41%, 97.00%, and 99.77%, respectively. Notably, the model showed high performance while maintaining computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huazhijiyi完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
kk完成签到,获得积分10
5秒前
不安夜雪完成签到,获得积分10
6秒前
完美世界应助逃离大西北采纳,获得10
7秒前
inzaghi完成签到,获得积分10
7秒前
学术通zzz应助刘晓倩采纳,获得10
8秒前
8秒前
嘉博学长发布了新的文献求助10
8秒前
ppppp完成签到,获得积分10
9秒前
卢卿发布了新的文献求助10
9秒前
wk完成签到,获得积分10
9秒前
杨志坚完成签到 ,获得积分10
9秒前
9秒前
9秒前
天天快乐应助1t采纳,获得10
10秒前
Sten发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Spidyyy发布了新的文献求助10
12秒前
13秒前
by发布了新的文献求助10
14秒前
尧九发布了新的文献求助10
15秒前
shju完成签到 ,获得积分10
17秒前
小鱼仔发布了新的文献求助10
17秒前
鲤鱼树叶发布了新的文献求助10
18秒前
20秒前
Sean完成签到,获得积分10
22秒前
卢卿完成签到,获得积分10
22秒前
yifanchen应助Spidyyy采纳,获得10
22秒前
22秒前
凹凸先森应助闪闪小玉采纳,获得20
23秒前
Sean发布了新的文献求助10
24秒前
1t发布了新的文献求助10
24秒前
科研通AI2S应助书竹采纳,获得10
25秒前
dodox完成签到,获得积分10
25秒前
凹凸先森应助时尚语梦采纳,获得10
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329637
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594828
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278