Oxophilic Tm‐Sites in MoS2 Trigger Thermodynamic Spontaneous Water Dissociation for Enhanced Hydrogen Evolution

材料科学 离解(化学) 化学物理 纳米技术 热力学 物理化学 化学 量子力学 物理
作者
Meng Li,Xuan Wang,Han Du,Wenrou Dong,Songbo Ye,Heng Liu,Huamei Sun,Kai Huang,Hao Li,Yawen Tang,Gengtao Fu
出处
期刊:Advanced Energy Materials [Wiley]
被引量:13
标识
DOI:10.1002/aenm.202401716
摘要

Abstract 2D MoS 2 is acknowledged as a potential alternative to Pt‐based catalysts for hydrogen evolution reaction (HER) due to its suitable * H adsorption energy. However, the weak water adsorption capacity of MoS 2 in an alkaline solution limits its performance improvement toward HER. Herein, a novel rare‐earth Tm single atoms decorated MoS 2 (Tm SAs‐MoS 2 ) catalyst is proposed, and the key role of Tm SAs on the enhanced HER performance of MoS 2 is identified. It is verified that the Tm‐site in MoS 2 contributes to the asymmetric [Mo‐S‐Tm] unit site, which serves as the electron donor to disturb the electronic state and accelerate electron accumulation at surrounding Mo‐S site. The obtained Tm SAs‐MoS 2 exhibits significantly improved HER activity with a low overpotential of 80 mV at 10 mA cm −2 , robust stability and good selectivity in alkaline solution compared with pure MoS 2 and most MoS 2 ‐based catalysts. In situ Raman and theoretical calculations prove that the oxophilic Tm in [Mo‐S‐Tm] unit sites significantly improves the migration and thermodynamic spontaneous dissociation of interfacial H 2 O molecules during HER by the Tm‐4f‐OH orbital overlap. Such [Tm‐S‐Mo] unit site allows the optimal G *H location of Tm SAs‐MoS 2 , which in turn reaches the apex of the theoretical HER volcano plot. This work is expected to open up new avenues for the design of novel alkaline HER catalysts and provide a valuable understanding of rare earth enhanced mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Draeck完成签到,获得积分10
刚刚
cruise完成签到,获得积分10
刚刚
在水一方应助念念采纳,获得10
刚刚
刚刚
1秒前
万能图书馆应助动听导师采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
科研通AI5应助蒋念寒采纳,获得10
2秒前
ric发布了新的文献求助200
2秒前
Li完成签到,获得积分10
2秒前
2秒前
min17完成签到,获得积分10
3秒前
3秒前
小黄发布了新的文献求助10
3秒前
Lucas应助dldddz采纳,获得10
4秒前
4秒前
柠木发布了新的文献求助10
4秒前
郭泓嵩完成签到,获得积分10
5秒前
自由刺猬发布了新的文献求助20
5秒前
weddcf发布了新的文献求助10
5秒前
江月年完成签到 ,获得积分10
5秒前
ZHANG_Kun完成签到 ,获得积分10
5秒前
bin0920完成签到,获得积分10
6秒前
7秒前
7秒前
cruise发布了新的文献求助10
7秒前
向日葵的Rui完成签到,获得积分10
7秒前
小xy发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助青石采纳,获得10
8秒前
科目三应助yangyang采纳,获得10
8秒前
仄兀发布了新的文献求助10
8秒前
小小鱼发布了新的文献求助10
8秒前
孙成成完成签到 ,获得积分10
9秒前
ee完成签到,获得积分10
9秒前
刘德华完成签到,获得积分10
9秒前
Disci完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678