清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution

图形 中心性 计算机科学 特征学习 数学 人工智能 数据挖掘 模式识别(心理学) 理论计算机科学 组合数学
作者
Jinkai Wu,Pengli Lu,Wenqi Zhang
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:692: 115554-115554
标识
DOI:10.1016/j.ab.2024.115554
摘要

A series of biological experiments has demonstrated that circular RNAs play a crucial regulatory role in cellular processes and may be potentially associated with diseases. Uncovering these connections helps in understanding potential disease mechanisms and advancing the development of treatment strategies. However, in biology, traditional experiments face limitations in terms of efficiency and cost, especially when enumerating possible associations. To address these limitations, several computational methods have been proposed, but existing methods only measure from a nodal perspective and cannot capture structural similarities between edges. In this study, we introduce an advanced computational method called SATPIC2CD for analyzing potential associations between circular RNAs and diseases. Specifically, we first employ an Structure-Aware Graph Transformer (SAT), which extracts five predefined metapath representations before calculating attention. This adaptive network integrates structural information into the original self-attention by aggregating information within and between paths. Subsequently, we use Path Integral Convolutional Networks (PACN) to integrate feature information for all path weights between two nodes. Afterward, we complement the network node features with feature loss and feature smoothing using Gated Recurrent Units (GRU) and node centrality. Finally, a Multi-Layer Perceptron (MLP) is employed to obtain the ultimate prediction scores for each circular RNA-disease pair. SATPIC2CD performs remarkably well, with an accuracy of up to 0.9715 measured by the Area Under the Curve (AUC) in a 5-fold cross-validation, surpassing other comparative models. Case studies further emphasize the high precision of our method in identifying circular RNA-disease associations, laying a solid foundation for guiding future biological research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
yw完成签到 ,获得积分10
23秒前
24秒前
IlIIlIlIIIllI完成签到,获得积分10
55秒前
方白秋完成签到,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
迅速灵竹完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助ARESCI采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
DTP完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Sophiaple发布了新的文献求助10
2分钟前
吴医生发布了新的文献求助10
2分钟前
2分钟前
2分钟前
吴医生完成签到,获得积分10
2分钟前
3分钟前
梓歆完成签到 ,获得积分10
3分钟前
Orange应助科研通管家采纳,获得10
4分钟前
cosine发布了新的文献求助10
4分钟前
4分钟前
cosine完成签到,获得积分10
4分钟前
4分钟前
脆饼同学发布了新的文献求助10
4分钟前
4分钟前
Zz完成签到 ,获得积分10
5分钟前
CodeCraft应助Kelsey采纳,获得10
5分钟前
5分钟前
6分钟前
xin发布了新的文献求助10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434819
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944320
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492148
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685847