已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Social-Aware Assisted Edge Collaborative Caching Based on Deep Reinforcement Learning Joint With Digital Twin Network in Internet of Vehicles

强化学习 计算机科学 互联网 GSM演进的增强数据速率 接头(建筑物) 人机交互 计算机网络 多媒体 人工智能 万维网 工程类 建筑工程
作者
Geng Chen,Wenqiang Duan,Jingli Sun,Qingtian Zeng,Yudong Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2024.3392596
摘要

With the development of Intelligent Transportation Systems (ITS), edge caching has gradually emerged as a critical technology to reduce transmission delay and optimize network load. However, the limited storage capacity and service scope of individual cache servers significantly degrade the performance of edge caching. To address this issue, we propose a social-aware assisted edge collaborative caching algorithm based on Dueling Double Deep Q-Network and Digital Twin Network (SACTD-D3). The algorithm can dynamically adjust the caching decision based on the similarity of user semantic information and the availability of edge services to fully utilize the caching capacity of edge servers. Firstly, vehicle clusters are formed based on users' semantic similarity, and an on-board cloud is constructed to reduce user request delay by sinking edge services. Secondly, based on the establishment of the three-layer structure of macro base station, roadside units and on-board cloud, the content heat-based caching decision policy is utilized to effectively improve the content cache hit rate. Moreover, an optimization problem is formulated to maximize the overall utility of the system subject to transmission delay and system cost, and thus the optimal solution is obtained using the proposed $\varepsilon$ -greedy SACTD-D3 algorithm. Furthermore, due to the dynamic complexity of the network topology, digital twin is used to simplify and map the network topology into digital twin networks for analysis and processing to improve network efficiency. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm in improving the system performance. Compared with Double DQN, Dueling DQN and DQN, the proposed SACTD-D3 algorithm reduces the request delay by 2.62 $\%$ , 3.06 $\%$ and 3.95 $\%$ , and reduces the energy cost by 26.07 $\%$ , 47.05 $\%$ and 49.90 $\%$ , respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ivan完成签到 ,获得积分10
1秒前
优雅的平安完成签到 ,获得积分10
2秒前
2秒前
七月份的表完成签到 ,获得积分10
5秒前
朴实的小萱完成签到 ,获得积分10
7秒前
阳光大山完成签到 ,获得积分10
8秒前
大鼻子的新四岁完成签到,获得积分10
12秒前
寻道图强完成签到,获得积分0
14秒前
追寻的问玉完成签到 ,获得积分10
15秒前
岳小龙完成签到 ,获得积分10
17秒前
仔仔完成签到 ,获得积分10
17秒前
嘉佳伽完成签到 ,获得积分10
18秒前
fyy完成签到 ,获得积分10
20秒前
八月完成签到 ,获得积分10
24秒前
潇洒的含蕊完成签到,获得积分10
27秒前
陈欣瑶完成签到 ,获得积分10
31秒前
33秒前
温馨家园完成签到 ,获得积分10
35秒前
1820完成签到,获得积分10
36秒前
Wang_miao完成签到 ,获得积分10
38秒前
后陡门爱神完成签到 ,获得积分10
41秒前
42秒前
和谐蛋蛋完成签到,获得积分10
42秒前
大喵完成签到,获得积分10
44秒前
Hanqi完成签到 ,获得积分10
44秒前
AAA工位主理人完成签到 ,获得积分10
48秒前
zetro发布了新的文献求助10
49秒前
孤独的小玉完成签到,获得积分10
49秒前
失眠依珊发布了新的文献求助10
53秒前
执着的采枫完成签到 ,获得积分10
54秒前
ningwu完成签到,获得积分10
54秒前
55秒前
香蕉觅云应助小雅采纳,获得10
56秒前
杨一一完成签到 ,获得积分10
57秒前
leyellows完成签到 ,获得积分10
58秒前
skdfz168完成签到 ,获得积分10
59秒前
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
阳佟冬卉完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245