清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Social-Aware Assisted Edge Collaborative Caching Based on Deep Reinforcement Learning Joint With Digital Twin Network in Internet of Vehicles

强化学习 计算机科学 互联网 GSM演进的增强数据速率 接头(建筑物) 人机交互 计算机网络 多媒体 人工智能 万维网 工程类 建筑工程
作者
Geng Chen,Wenqiang Duan,Jingli Sun,Qingtian Zeng,Yudong Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2024.3392596
摘要

With the development of Intelligent Transportation Systems (ITS), edge caching has gradually emerged as a critical technology to reduce transmission delay and optimize network load. However, the limited storage capacity and service scope of individual cache servers significantly degrade the performance of edge caching. To address this issue, we propose a social-aware assisted edge collaborative caching algorithm based on Dueling Double Deep Q-Network and Digital Twin Network (SACTD-D3). The algorithm can dynamically adjust the caching decision based on the similarity of user semantic information and the availability of edge services to fully utilize the caching capacity of edge servers. Firstly, vehicle clusters are formed based on users' semantic similarity, and an on-board cloud is constructed to reduce user request delay by sinking edge services. Secondly, based on the establishment of the three-layer structure of macro base station, roadside units and on-board cloud, the content heat-based caching decision policy is utilized to effectively improve the content cache hit rate. Moreover, an optimization problem is formulated to maximize the overall utility of the system subject to transmission delay and system cost, and thus the optimal solution is obtained using the proposed $\varepsilon$ -greedy SACTD-D3 algorithm. Furthermore, due to the dynamic complexity of the network topology, digital twin is used to simplify and map the network topology into digital twin networks for analysis and processing to improve network efficiency. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm in improving the system performance. Compared with Double DQN, Dueling DQN and DQN, the proposed SACTD-D3 algorithm reduces the request delay by 2.62 $\%$ , 3.06 $\%$ and 3.95 $\%$ , and reduces the energy cost by 26.07 $\%$ , 47.05 $\%$ and 49.90 $\%$ , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
肖果完成签到 ,获得积分10
10秒前
小小完成签到 ,获得积分10
12秒前
淡然一德完成签到,获得积分10
18秒前
keyan完成签到 ,获得积分10
20秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
30秒前
yellowonion完成签到 ,获得积分10
30秒前
跳跃的鹏飞完成签到 ,获得积分10
31秒前
大猪完成签到 ,获得积分10
31秒前
4652376完成签到 ,获得积分10
33秒前
明天更好完成签到 ,获得积分10
34秒前
kyokyoro完成签到,获得积分10
35秒前
lilylian完成签到,获得积分10
46秒前
Ethan完成签到 ,获得积分0
50秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
安子完成签到 ,获得积分10
1分钟前
扶我起来写论文完成签到 ,获得积分10
1分钟前
1分钟前
shadow完成签到,获得积分10
1分钟前
正直的魔镜完成签到 ,获得积分10
1分钟前
雍州小铁匠完成签到 ,获得积分10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
1分钟前
hadfunsix完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
彭于晏应助积极的远山采纳,获得10
1分钟前
漱石枕流完成签到 ,获得积分10
1分钟前
wushuimei完成签到 ,获得积分10
1分钟前
山东老铁完成签到 ,获得积分10
2分钟前
xianyaoz完成签到 ,获得积分0
2分钟前
ypres完成签到 ,获得积分10
2分钟前
Chase完成签到,获得积分10
2分钟前
冰留完成签到 ,获得积分10
2分钟前
快乐的蓝完成签到 ,获得积分10
2分钟前
曾经的芫完成签到 ,获得积分10
2分钟前
青竹妈妈发布了新的文献求助10
2分钟前
航行天下完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076054
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839