亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Social-Aware Assisted Edge Collaborative Caching Based on Deep Reinforcement Learning Joint With Digital Twin Network in Internet of Vehicles

强化学习 计算机科学 互联网 GSM演进的增强数据速率 接头(建筑物) 人机交互 计算机网络 多媒体 人工智能 万维网 工程类 建筑工程
作者
Geng Chen,Wenqiang Duan,Jingli Sun,Qingtian Zeng,Yudong Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2024.3392596
摘要

With the development of Intelligent Transportation Systems (ITS), edge caching has gradually emerged as a critical technology to reduce transmission delay and optimize network load. However, the limited storage capacity and service scope of individual cache servers significantly degrade the performance of edge caching. To address this issue, we propose a social-aware assisted edge collaborative caching algorithm based on Dueling Double Deep Q-Network and Digital Twin Network (SACTD-D3). The algorithm can dynamically adjust the caching decision based on the similarity of user semantic information and the availability of edge services to fully utilize the caching capacity of edge servers. Firstly, vehicle clusters are formed based on users' semantic similarity, and an on-board cloud is constructed to reduce user request delay by sinking edge services. Secondly, based on the establishment of the three-layer structure of macro base station, roadside units and on-board cloud, the content heat-based caching decision policy is utilized to effectively improve the content cache hit rate. Moreover, an optimization problem is formulated to maximize the overall utility of the system subject to transmission delay and system cost, and thus the optimal solution is obtained using the proposed $\varepsilon$ -greedy SACTD-D3 algorithm. Furthermore, due to the dynamic complexity of the network topology, digital twin is used to simplify and map the network topology into digital twin networks for analysis and processing to improve network efficiency. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm in improving the system performance. Compared with Double DQN, Dueling DQN and DQN, the proposed SACTD-D3 algorithm reduces the request delay by 2.62 $\%$ , 3.06 $\%$ and 3.95 $\%$ , and reduces the energy cost by 26.07 $\%$ , 47.05 $\%$ and 49.90 $\%$ , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
垚祎完成签到 ,获得积分10
10秒前
21秒前
我是大兴发布了新的文献求助10
24秒前
小太阳完成签到 ,获得积分10
44秒前
Tuesday完成签到 ,获得积分10
1分钟前
CodeCraft应助康2000采纳,获得10
1分钟前
lew发布了新的文献求助10
1分钟前
1分钟前
Ally应助科研通管家采纳,获得10
1分钟前
豆子应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
天天快乐应助wanxing采纳,获得10
1分钟前
WLX001完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助ExcitedFrog采纳,获得10
2分钟前
leeking驳回了Frank应助
2分钟前
樱桃猴子完成签到,获得积分10
3分钟前
3分钟前
小马甲应助阿明采纳,获得20
3分钟前
记录者完成签到 ,获得积分10
3分钟前
阿明完成签到,获得积分10
3分钟前
豆子应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
阿明发布了新的文献求助20
4分钟前
FXT完成签到 ,获得积分10
4分钟前
飘逸楷瑞完成签到,获得积分10
4分钟前
飘逸楷瑞发布了新的文献求助10
4分钟前
zqq完成签到,获得积分0
4分钟前
5分钟前
leeking给leeking的求助进行了留言
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
ExcitedFrog发布了新的文献求助10
5分钟前
曲珍完成签到,获得积分10
5分钟前
Ally应助科研通管家采纳,获得10
5分钟前
5分钟前
曲珍发布了新的文献求助10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077703
求助须知:如何正确求助?哪些是违规求助? 2730504
关于积分的说明 7513134
捐赠科研通 2378733
什么是DOI,文献DOI怎么找? 1261454
科研通“疑难数据库(出版商)”最低求助积分说明 611527
版权声明 597255