Social-Aware Assisted Edge Collaborative Caching Based on Deep Reinforcement Learning Joint With Digital Twin Network in Internet of Vehicles

强化学习 计算机科学 互联网 GSM演进的增强数据速率 接头(建筑物) 人机交互 计算机网络 多媒体 人工智能 万维网 工程类 建筑工程
作者
Geng Chen,Wenqiang Duan,Jingli Sun,Qingtian Zeng,Yudong Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tits.2024.3392596
摘要

With the development of Intelligent Transportation Systems (ITS), edge caching has gradually emerged as a critical technology to reduce transmission delay and optimize network load. However, the limited storage capacity and service scope of individual cache servers significantly degrade the performance of edge caching. To address this issue, we propose a social-aware assisted edge collaborative caching algorithm based on Dueling Double Deep Q-Network and Digital Twin Network (SACTD-D3). The algorithm can dynamically adjust the caching decision based on the similarity of user semantic information and the availability of edge services to fully utilize the caching capacity of edge servers. Firstly, vehicle clusters are formed based on users' semantic similarity, and an on-board cloud is constructed to reduce user request delay by sinking edge services. Secondly, based on the establishment of the three-layer structure of macro base station, roadside units and on-board cloud, the content heat-based caching decision policy is utilized to effectively improve the content cache hit rate. Moreover, an optimization problem is formulated to maximize the overall utility of the system subject to transmission delay and system cost, and thus the optimal solution is obtained using the proposed $\varepsilon$ -greedy SACTD-D3 algorithm. Furthermore, due to the dynamic complexity of the network topology, digital twin is used to simplify and map the network topology into digital twin networks for analysis and processing to improve network efficiency. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm in improving the system performance. Compared with Double DQN, Dueling DQN and DQN, the proposed SACTD-D3 algorithm reduces the request delay by 2.62 $\%$ , 3.06 $\%$ and 3.95 $\%$ , and reduces the energy cost by 26.07 $\%$ , 47.05 $\%$ and 49.90 $\%$ , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason发布了新的文献求助10
1秒前
paulmichael发布了新的文献求助10
2秒前
3秒前
香蕉觅云应助搞怪哑铃采纳,获得10
3秒前
张诗远发布了新的文献求助10
7秒前
9秒前
Jason完成签到,获得积分10
9秒前
10秒前
劲秉应助马紫婷采纳,获得10
10秒前
11秒前
11秒前
emilybei发布了新的文献求助10
12秒前
12秒前
emilybei发布了新的文献求助10
13秒前
13秒前
emilybei发布了新的文献求助10
13秒前
13秒前
emilybei发布了新的文献求助10
14秒前
emilybei发布了新的文献求助10
14秒前
emilybei发布了新的文献求助10
14秒前
14秒前
14秒前
落寞剑成完成签到 ,获得积分10
15秒前
15秒前
emilybei发布了新的文献求助10
16秒前
毕十三发布了新的文献求助10
16秒前
明亮冬易发布了新的文献求助10
16秒前
17秒前
17秒前
wanci应助优雅含灵采纳,获得10
17秒前
emilybei发布了新的文献求助30
18秒前
emilybei发布了新的文献求助10
18秒前
emilybei发布了新的文献求助10
18秒前
emilybei发布了新的文献求助10
18秒前
emilybei发布了新的文献求助10
18秒前
19秒前
专注代秋完成签到 ,获得积分10
19秒前
李加毅发布了新的文献求助10
22秒前
中和皇极应助木子采纳,获得10
23秒前
syyy发布了新的文献求助10
26秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693