A Deep Reinforcement Learning Algorithm for Trajectory Planning of Swarm UAV Fulfilling Wildfire Reconnaissance

强化学习 弹道 群体行为 计算机科学 人工智能 运动规划 算法 计算机视觉 机器人 物理 天文
作者
Kubilay Demir,Vedat Tümen,Selahattin Koşunalp,Teodor Iliev
出处
期刊:Electronics [MDPI AG]
卷期号:13 (13): 2568-2568 被引量:1
标识
DOI:10.3390/electronics13132568
摘要

Wildfires have long been one of the critical environmental disasters that require a careful monitoring system. An intelligent system has the potential to both prevent/extinguish the fire and deliver urgent requirements postfire. In recent years, unmanned aerial vehicles (UAVs), with the ability to detect missions in high-risk areas, have been gaining increasing interest, particularly in forest fire monitoring. Taking a large-scale area involved in a fire into consideration, a single UAV is often insufficient to accomplish the task of covering the whole disaster zone. This poses the challenge of multi-UAVs optimum path planning with a key focus on limitations such as energy constraints and connectivity. To narrow down this issue, this paper proposes a deep reinforcement learning-based trajectory planning approach for multi-UAVs that permits UAVs to extract the required information within the disaster area on time. A target area is partitioned into several identical subareas in terms of size to enable UAVs to perform their patrol duties over the subareas. This subarea-based arrangement converts the issue of trajectory planning into allowing UAVs to frequently visit each subarea. Each subarea is initiated with a risk level by creating a fire risk map optimizing the UAV patrol route more precisely. Through a set of simulations conducted with a real trace of the dataset, the performance outcomes confirmed the superiority of the proposed idea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杏梨完成签到,获得积分10
1秒前
刘mang完成签到 ,获得积分20
1秒前
1秒前
佳丽完成签到,获得积分10
2秒前
刘mang发布了新的文献求助10
6秒前
背后雨柏完成签到 ,获得积分10
6秒前
郑小七完成签到,获得积分10
7秒前
skepticalsnails完成签到,获得积分0
11秒前
风中黎昕完成签到,获得积分10
11秒前
12秒前
just完成签到,获得积分10
14秒前
彭于晏应助美好斓采纳,获得10
19秒前
19秒前
无限的含羞草完成签到,获得积分10
19秒前
yueyue完成签到,获得积分10
20秒前
20秒前
西四发布了新的文献求助10
24秒前
优雅的琳发布了新的文献求助10
25秒前
尔尔完成签到 ,获得积分10
26秒前
热心又蓝完成签到,获得积分10
26秒前
弧光完成签到 ,获得积分10
27秒前
Wxyz完成签到,获得积分10
30秒前
Li发布了新的文献求助10
32秒前
fuguier发布了新的文献求助10
33秒前
木子完成签到,获得积分10
33秒前
wanci应助我喜欢下雪采纳,获得10
34秒前
35秒前
科研通AI2S应助土豆晴采纳,获得10
35秒前
orixero应助土豆晴采纳,获得10
35秒前
美好斓发布了新的文献求助10
38秒前
orixero应助sjx1116采纳,获得10
39秒前
41秒前
奥米希完成签到,获得积分10
41秒前
matchais1ife完成签到 ,获得积分10
42秒前
孟伟完成签到,获得积分10
43秒前
44秒前
上将军顺完成签到,获得积分10
44秒前
林撞树发布了新的文献求助50
45秒前
zx完成签到 ,获得积分10
45秒前
高高的从波完成签到,获得积分10
46秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339162
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628112
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180