A Deep Reinforcement Learning Algorithm for Trajectory Planning of Swarm UAV Fulfilling Wildfire Reconnaissance

强化学习 弹道 群体行为 计算机科学 人工智能 运动规划 算法 计算机视觉 机器人 天文 物理
作者
Kubilay Demir,Vedat Tümen,Selahattin Koşunalp,Teodor Iliev
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 2568-2568 被引量:1
标识
DOI:10.3390/electronics13132568
摘要

Wildfires have long been one of the critical environmental disasters that require a careful monitoring system. An intelligent system has the potential to both prevent/extinguish the fire and deliver urgent requirements postfire. In recent years, unmanned aerial vehicles (UAVs), with the ability to detect missions in high-risk areas, have been gaining increasing interest, particularly in forest fire monitoring. Taking a large-scale area involved in a fire into consideration, a single UAV is often insufficient to accomplish the task of covering the whole disaster zone. This poses the challenge of multi-UAVs optimum path planning with a key focus on limitations such as energy constraints and connectivity. To narrow down this issue, this paper proposes a deep reinforcement learning-based trajectory planning approach for multi-UAVs that permits UAVs to extract the required information within the disaster area on time. A target area is partitioned into several identical subareas in terms of size to enable UAVs to perform their patrol duties over the subareas. This subarea-based arrangement converts the issue of trajectory planning into allowing UAVs to frequently visit each subarea. Each subarea is initiated with a risk level by creating a fire risk map optimizing the UAV patrol route more precisely. Through a set of simulations conducted with a real trace of the dataset, the performance outcomes confirmed the superiority of the proposed idea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌萌哒完成签到,获得积分10
刚刚
一只啾咪发布了新的文献求助10
1秒前
秀某完成签到 ,获得积分10
1秒前
ZJFL完成签到,获得积分10
1秒前
艽野发布了新的文献求助10
1秒前
李健的粉丝团团长应助wxxx采纳,获得10
1秒前
科研通AI5应助无语的千儿采纳,获得10
1秒前
innyjiang完成签到,获得积分10
2秒前
2秒前
传奇3应助高宇晖采纳,获得10
2秒前
科研的神发布了新的文献求助10
2秒前
张张张完成签到,获得积分20
2秒前
cleva完成签到,获得积分10
2秒前
22完成签到,获得积分10
2秒前
顺心羊发布了新的文献求助10
4秒前
yowgo完成签到,获得积分10
4秒前
tinge完成签到,获得积分10
5秒前
自然妙旋完成签到,获得积分10
5秒前
magickou完成签到,获得积分10
5秒前
sunshine完成签到,获得积分10
5秒前
WB发布了新的文献求助10
5秒前
崔崔完成签到,获得积分10
5秒前
核桃小小苏完成签到,获得积分10
6秒前
6秒前
linjiebro完成签到,获得积分10
6秒前
合适鲂完成签到,获得积分10
6秒前
6秒前
心灵手巧完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
家若完成签到 ,获得积分10
7秒前
土豆你个西红柿完成签到,获得积分10
7秒前
8秒前
Ray完成签到,获得积分10
8秒前
nulinuli完成签到 ,获得积分10
8秒前
8秒前
团团与蛋蛋完成签到,获得积分20
8秒前
KHromance完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614444
求助须知:如何正确求助?哪些是违规求助? 4018649
关于积分的说明 12439260
捐赠科研通 3701425
什么是DOI,文献DOI怎么找? 2041187
邀请新用户注册赠送积分活动 1073927
科研通“疑难数据库(出版商)”最低求助积分说明 957600