A Deep Reinforcement Learning Algorithm for Trajectory Planning of Swarm UAV Fulfilling Wildfire Reconnaissance

强化学习 弹道 群体行为 计算机科学 人工智能 运动规划 算法 计算机视觉 机器人 天文 物理
作者
Kubilay Demir,Vedat Tümen,Selahattin Koşunalp,Teodor Iliev
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 2568-2568 被引量:1
标识
DOI:10.3390/electronics13132568
摘要

Wildfires have long been one of the critical environmental disasters that require a careful monitoring system. An intelligent system has the potential to both prevent/extinguish the fire and deliver urgent requirements postfire. In recent years, unmanned aerial vehicles (UAVs), with the ability to detect missions in high-risk areas, have been gaining increasing interest, particularly in forest fire monitoring. Taking a large-scale area involved in a fire into consideration, a single UAV is often insufficient to accomplish the task of covering the whole disaster zone. This poses the challenge of multi-UAVs optimum path planning with a key focus on limitations such as energy constraints and connectivity. To narrow down this issue, this paper proposes a deep reinforcement learning-based trajectory planning approach for multi-UAVs that permits UAVs to extract the required information within the disaster area on time. A target area is partitioned into several identical subareas in terms of size to enable UAVs to perform their patrol duties over the subareas. This subarea-based arrangement converts the issue of trajectory planning into allowing UAVs to frequently visit each subarea. Each subarea is initiated with a risk level by creating a fire risk map optimizing the UAV patrol route more precisely. Through a set of simulations conducted with a real trace of the dataset, the performance outcomes confirmed the superiority of the proposed idea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哆啦小鱼完成签到,获得积分10
3秒前
Hello应助骤雨时晴采纳,获得10
3秒前
黄油曲奇Nana完成签到,获得积分10
4秒前
pcx发布了新的文献求助10
5秒前
6秒前
白色风车完成签到,获得积分10
6秒前
Bili发布了新的文献求助10
6秒前
6秒前
7秒前
百里丹珍完成签到,获得积分10
7秒前
110o发布了新的文献求助10
7秒前
11秒前
12秒前
12秒前
Lucas应助Bili采纳,获得10
13秒前
汪汪队立大功完成签到,获得积分10
13秒前
今后应助zzznznnn采纳,获得10
14秒前
Sweet关注了科研通微信公众号
14秒前
在水一方应助Binbin采纳,获得10
14秒前
马兵完成签到,获得积分20
14秒前
15秒前
15秒前
Rondab应助海的呼唤采纳,获得10
15秒前
15秒前
15秒前
周凡淇发布了新的文献求助10
15秒前
16秒前
16秒前
小巧亦竹完成签到,获得积分10
16秒前
Foch发布了新的文献求助10
17秒前
骤雨时晴发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
汉堡包应助书亚采纳,获得10
19秒前
渡尘发布了新的文献求助10
19秒前
乐乐应助Mini33采纳,获得50
19秒前
夕阳殆晖发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070