A Deep Reinforcement Learning Algorithm for Trajectory Planning of Swarm UAV Fulfilling Wildfire Reconnaissance

强化学习 弹道 群体行为 计算机科学 人工智能 运动规划 算法 计算机视觉 机器人 物理 天文
作者
Kubilay Demir,Vedat Tümen,Selahattin Koşunalp,Teodor Iliev
出处
期刊:Electronics [MDPI AG]
卷期号:13 (13): 2568-2568 被引量:1
标识
DOI:10.3390/electronics13132568
摘要

Wildfires have long been one of the critical environmental disasters that require a careful monitoring system. An intelligent system has the potential to both prevent/extinguish the fire and deliver urgent requirements postfire. In recent years, unmanned aerial vehicles (UAVs), with the ability to detect missions in high-risk areas, have been gaining increasing interest, particularly in forest fire monitoring. Taking a large-scale area involved in a fire into consideration, a single UAV is often insufficient to accomplish the task of covering the whole disaster zone. This poses the challenge of multi-UAVs optimum path planning with a key focus on limitations such as energy constraints and connectivity. To narrow down this issue, this paper proposes a deep reinforcement learning-based trajectory planning approach for multi-UAVs that permits UAVs to extract the required information within the disaster area on time. A target area is partitioned into several identical subareas in terms of size to enable UAVs to perform their patrol duties over the subareas. This subarea-based arrangement converts the issue of trajectory planning into allowing UAVs to frequently visit each subarea. Each subarea is initiated with a risk level by creating a fire risk map optimizing the UAV patrol route more precisely. Through a set of simulations conducted with a real trace of the dataset, the performance outcomes confirmed the superiority of the proposed idea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下雨了吗?完成签到,获得积分20
1秒前
顾萧完成签到,获得积分10
1秒前
结实的寻桃完成签到,获得积分20
2秒前
Han完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
酷波er应助燕临峰采纳,获得10
4秒前
4秒前
刘涵完成签到 ,获得积分10
5秒前
可爱的函函应助cd采纳,获得10
5秒前
sun发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
恬恬完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
赘婿应助1551采纳,获得10
8秒前
小桶爸爸完成签到,获得积分10
8秒前
jin发布了新的文献求助10
8秒前
10秒前
小方发布了新的文献求助10
10秒前
Dr_JennyZ应助liuliu采纳,获得10
10秒前
奋斗青年应助zhangjiashu采纳,获得10
10秒前
科研小举人完成签到,获得积分10
10秒前
粒粒发布了新的文献求助10
11秒前
11秒前
老实的衬衫完成签到 ,获得积分10
12秒前
领导范儿应助moon采纳,获得10
12秒前
star应助落尘采纳,获得110
13秒前
Liziuan发布了新的文献求助10
13秒前
13秒前
LYL完成签到,获得积分10
13秒前
14秒前
佳俊完成签到,获得积分10
14秒前
14秒前
冰晨完成签到,获得积分10
14秒前
不想干活完成签到,获得积分10
15秒前
Darjeeling完成签到,获得积分20
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007