The educational competition optimizer

竞赛(生物学) 计算机科学 数理经济学 运筹学 数学优化 数学 生物 生态学
作者
Junbo Lian,Ting Zhu,Ling Ma,Xincan Wu,Ali Asghar Heidari,Yi Chen,Huiling Chen,Guohua Hui
出处
期刊:International Journal of Systems Science [Taylor & Francis]
卷期号:55 (15): 3185-3222 被引量:20
标识
DOI:10.1080/00207721.2024.2367079
摘要

In recent research, metaheuristic strategies stand out as powerful tools for complex optimization, capturing widespread attention. This study proposes the Educational Competition Optimizer (ECO), an algorithm created for diverse optimization tasks. ECO draws inspiration from the competitive dynamics observed in real-world educational resource allocation scenarios, harnessing this principle to refine its search process. To further boost its efficiency, the algorithm divides the iterative process into three distinct phases: elementary, middle, and high school. Through this stepwise approach, ECO gradually narrows down the pool of potential solutions, mirroring the gradual competition witnessed within educational systems. This strategic approach ensures a smooth and resourceful transition between ECO's exploration and exploitation phases. The results indicate that ECO attains its peak optimization performance when configured with a population size of 40. Notably, the algorithm's optimization efficacy does not exhibit a strictly linear correlation with population size. To comprehensively evaluate ECO's effectiveness and convergence characteristics, we conducted a rigorous comparative analysis, comparing ECO against nine state-of-the-art metaheuristic algorithms. ECO's remarkable success in efficiently addressing complex optimization problems underscores its potential applicability across diverse real-world domains. The additional resources and open-source code for the proposed ECO can be accessed at https://aliasgharheidari.com/ECO.html and https://github.com/junbolian/ECO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Youdge应助冷静的铅笔采纳,获得20
1秒前
盒子发布了新的文献求助10
1秒前
3秒前
LL发布了新的文献求助10
3秒前
mov完成签到,获得积分10
3秒前
chen完成签到,获得积分10
4秒前
mu完成签到,获得积分20
4秒前
桐桐应助笔墨留香采纳,获得10
5秒前
小马甲应助BANG采纳,获得10
6秒前
冯东关注了科研通微信公众号
6秒前
momo完成签到,获得积分10
9秒前
摇滚谬中庸完成签到 ,获得积分10
9秒前
11秒前
11秒前
研友_ngKyqn发布了新的文献求助10
12秒前
斯文败类应助小马哥采纳,获得10
12秒前
Olivergaga完成签到,获得积分20
13秒前
himsn完成签到,获得积分10
13秒前
lidongxing完成签到,获得积分10
15秒前
笔墨留香发布了新的文献求助10
16秒前
YN完成签到,获得积分10
16秒前
博修发布了新的文献求助10
18秒前
mu发布了新的文献求助30
19秒前
沉默冬卉发布了新的文献求助10
19秒前
小蘑菇应助小勇仔采纳,获得10
21秒前
6小瓶子完成签到,获得积分10
23秒前
NexusExplorer应助siyuwang1234采纳,获得10
24秒前
27秒前
烟花应助沉默冬卉采纳,获得10
27秒前
27秒前
ClarkClarkson完成签到,获得积分10
29秒前
思源应助时尚的飞机采纳,获得10
30秒前
量子星尘发布了新的文献求助30
30秒前
30秒前
乖猫要努力应助梓墨采纳,获得10
31秒前
31秒前
luluhuhu发布了新的文献求助10
33秒前
33秒前
星之芋发布了新的文献求助10
34秒前
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182