The educational competition optimizer

竞赛(生物学) 计算机科学 数理经济学 运筹学 数学优化 数学 生物 生态学
作者
Junbo Lian,Ting Zhu,Ling Ma,Xincan Wu,Ali Asghar Heidari,Yi Chen,Huiling Chen,Guohua Hui
出处
期刊:International Journal of Systems Science [Informa]
卷期号:55 (15): 3185-3222 被引量:57
标识
DOI:10.1080/00207721.2024.2367079
摘要

In recent research, metaheuristic strategies stand out as powerful tools for complex optimization, capturing widespread attention. This study proposes the Educational Competition Optimizer (ECO), an algorithm created for diverse optimization tasks. ECO draws inspiration from the competitive dynamics observed in real-world educational resource allocation scenarios, harnessing this principle to refine its search process. To further boost its efficiency, the algorithm divides the iterative process into three distinct phases: elementary, middle, and high school. Through this stepwise approach, ECO gradually narrows down the pool of potential solutions, mirroring the gradual competition witnessed within educational systems. This strategic approach ensures a smooth and resourceful transition between ECO's exploration and exploitation phases. The results indicate that ECO attains its peak optimization performance when configured with a population size of 40. Notably, the algorithm's optimization efficacy does not exhibit a strictly linear correlation with population size. To comprehensively evaluate ECO's effectiveness and convergence characteristics, we conducted a rigorous comparative analysis, comparing ECO against nine state-of-the-art metaheuristic algorithms. ECO's remarkable success in efficiently addressing complex optimization problems underscores its potential applicability across diverse real-world domains. The additional resources and open-source code for the proposed ECO can be accessed at https://aliasgharheidari.com/ECO.html and https://github.com/junbolian/ECO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuexYue完成签到,获得积分10
1秒前
英姑应助cckk采纳,获得10
1秒前
hkh发布了新的文献求助10
1秒前
1秒前
1秒前
VISIN发布了新的文献求助10
1秒前
doudou发布了新的文献求助10
1秒前
喜羊羊发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
LLL完成签到,获得积分10
3秒前
chr完成签到,获得积分10
3秒前
斯文败类应助sadd采纳,获得10
3秒前
赵慧完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
nico发布了新的文献求助10
3秒前
懒羊羊关注了科研通微信公众号
4秒前
牛马人发布了新的文献求助10
5秒前
5秒前
Sherlock完成签到,获得积分10
5秒前
酷波er应助徐爱琳采纳,获得10
5秒前
5秒前
小北发布了新的文献求助10
6秒前
嘉嘉完成签到,获得积分10
6秒前
PANXX完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
羊羊发布了新的文献求助10
6秒前
大气月饼发布了新的文献求助10
7秒前
流星砸地鼠完成签到 ,获得积分10
8秒前
8秒前
茹茹发布了新的文献求助10
8秒前
Bear发布了新的文献求助10
9秒前
赵慧发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小蘑菇应助Sandy采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210