剥脱关节
纳米-
材料科学
微波食品加热
碳纤维
氮化物
纳米技术
化学工程
分析化学(期刊)
光电子学
化学
复合材料
石墨烯
色谱法
电信
工程类
复合数
图层(电子)
作者
Cheng‐Long Shen,Qing Lou,Kai-Kai Liu,Guangsong Zheng,Run‐Wei Song,Jinhao Zang,Xigui Yang,Xing Li,Lin Dong,Chongxin Shan
出处
期刊:Energy & environmental materials
日期:2024-06-24
卷期号:7 (6)
被引量:1
摘要
As one promising carbon‐based material, sp 3 ‐hybrid carbon nitride has been predicted with various novel physicochemical properties. However, the synthesis of sp 3 ‐hybrid carbon nitride is still limited by the nanaoscale, low crystallinity, complex source, and expensive instruments. Herein, we have presented a facile approach to the sp 3 ‐hybrid carbon nitride nano/micro‐crystals with microwave‐assisted confining growth and liquid exfoliation. Actually, the carbon nitride nano/micro‐crystals can spontaneously emerge and grow in the microwave‐assisted polymerization of citric acid and urea, and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro‐crystals. The obtained carbon nitride nano/micro‐crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05% in solid state. The experimental characterizations and density functional theory calculations reveal that the interface‐trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro‐crystals and the interparticle staggered stacking will prevent the aggregation‐caused‐quenching partially. Finally, the carbon nitride nano/micro‐crystals are demonstrated to be potentially useful as the phosphor medium in light‐emitting‐diode for interrupting blue light‐induced eye damage. This work paves new light on the synthesis strategy of sp 3 ‐hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.
科研通智能强力驱动
Strongly Powered by AbleSci AI