Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小琦琦发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
007完成签到,获得积分10
3秒前
教育厮完成签到,获得积分10
3秒前
ys完成签到,获得积分10
3秒前
3秒前
3秒前
烟花应助瓜兮兮CYY采纳,获得10
4秒前
朴实涵菡发布了新的文献求助10
6秒前
1111111111111发布了新的文献求助10
6秒前
岁大爷发布了新的文献求助10
6秒前
轻松小之发布了新的文献求助10
8秒前
8秒前
领导范儿应助健忘症采纳,获得10
8秒前
zzll发布了新的文献求助10
8秒前
壮观的翠芙完成签到,获得积分10
9秒前
顾矜应助皮崇知采纳,获得10
9秒前
10秒前
11秒前
小琦琦完成签到,获得积分10
11秒前
12秒前
凉薄少年应助budingman采纳,获得20
13秒前
ailemonmint发布了新的文献求助10
13秒前
无花果应助朴实涵菡采纳,获得10
14秒前
14秒前
14秒前
15秒前
十六发布了新的文献求助10
15秒前
啥也不懂发布了新的文献求助10
15秒前
冰柠檬发布了新的文献求助10
16秒前
苹果白凝完成签到,获得积分10
16秒前
无花果应助清_采纳,获得10
16秒前
潇洒完成签到,获得积分10
17秒前
飘逸小懒猪关注了科研通微信公众号
17秒前
好名字发布了新的文献求助10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420