Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迢迢笙箫应助彭珊采纳,获得10
2秒前
2秒前
4秒前
4秒前
zhang完成签到,获得积分10
5秒前
乐乐应助GEZI采纳,获得10
7秒前
AYu完成签到,获得积分10
8秒前
9秒前
9秒前
CooL完成签到 ,获得积分10
9秒前
ALONE发布了新的文献求助10
9秒前
王烨完成签到 ,获得积分10
11秒前
Skyeisland完成签到,获得积分10
11秒前
11秒前
11秒前
pluto应助小鸣采纳,获得50
12秒前
13秒前
Vesper完成签到,获得积分10
13秒前
小龙儿完成签到,获得积分10
14秒前
单薄的咖啡完成签到 ,获得积分10
16秒前
16秒前
桐桐应助龙龙采纳,获得10
17秒前
17秒前
喜乐完成签到 ,获得积分10
18秒前
迷你的冰巧完成签到,获得积分10
19秒前
21秒前
自然的衫完成签到 ,获得积分10
21秒前
嗯哼应助香瓜采纳,获得20
21秒前
21秒前
wen发布了新的文献求助10
22秒前
动人的巧荷完成签到,获得积分20
24秒前
ddd发布了新的文献求助30
24秒前
Hello应助买菜市民熊先生采纳,获得10
25秒前
迷路茈完成签到,获得积分10
28秒前
Starry完成签到,获得积分10
30秒前
kaka完成签到,获得积分10
31秒前
31秒前
31秒前
简单花花完成签到,获得积分10
32秒前
仙女的小可爱完成签到 ,获得积分10
37秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685