Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
qwe完成签到,获得积分10
2秒前
本是个江湖散人完成签到,获得积分10
3秒前
5秒前
8秒前
12秒前
那等不到的思恋完成签到 ,获得积分10
12秒前
12秒前
酷酷的涵蕾完成签到 ,获得积分10
14秒前
隐形白开水完成签到,获得积分0
15秒前
王正浩完成签到 ,获得积分10
19秒前
朝暮完成签到 ,获得积分10
22秒前
辛勤安梦完成签到,获得积分10
24秒前
姜菲菲完成签到,获得积分10
24秒前
fd163c完成签到,获得积分10
25秒前
温如军完成签到 ,获得积分10
29秒前
小张完成签到 ,获得积分10
29秒前
liuguohua126完成签到,获得积分10
32秒前
34秒前
杨涵完成签到 ,获得积分10
35秒前
38秒前
38秒前
43秒前
可爱的函函应助舒适松鼠采纳,获得10
44秒前
小梁完成签到,获得积分10
46秒前
Jyy77完成签到 ,获得积分10
49秒前
52秒前
54秒前
crystaler完成签到 ,获得积分10
55秒前
57秒前
浪子完成签到,获得积分10
58秒前
pengyh8完成签到 ,获得积分10
59秒前
青黛完成签到 ,获得积分10
1分钟前
ryq327完成签到 ,获得积分10
1分钟前
LL完成签到,获得积分10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
正己化人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
xxquinuan应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498637
求助须知:如何正确求助?哪些是违规求助? 4595826
关于积分的说明 14449838
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561