Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助安心采纳,获得10
刚刚
丹曦完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
浮游应助舒心的芝麻采纳,获得10
3秒前
田国兵发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Nancy完成签到 ,获得积分10
4秒前
莎莎士比亚完成签到,获得积分10
4秒前
hjjjjj1发布了新的文献求助10
4秒前
vlots应助zdb采纳,获得30
4秒前
4秒前
keyring完成签到 ,获得积分10
5秒前
5秒前
6秒前
伶俐碧萱完成签到 ,获得积分10
6秒前
Sugar发布了新的文献求助10
7秒前
传奇3应助落后项链采纳,获得10
7秒前
maybe发布了新的文献求助10
7秒前
8秒前
紫色哀伤完成签到,获得积分10
9秒前
acadedog完成签到 ,获得积分10
10秒前
10秒前
null应助拉格朗日柴犬采纳,获得10
11秒前
烟花应助hjjjjj1采纳,获得10
12秒前
氯吡格雷发布了新的文献求助10
12秒前
zz完成签到,获得积分10
13秒前
科研通AI2S应助大梦采纳,获得10
14秒前
老牛完成签到 ,获得积分10
14秒前
cgl155410完成签到,获得积分10
16秒前
16秒前
16秒前
浮游应助冷傲藏鸟采纳,获得10
16秒前
17秒前
华仔应助伶俐碧萱采纳,获得10
18秒前
安心完成签到,获得积分10
18秒前
科研通AI2S应助May采纳,获得10
19秒前
20秒前
鱼鱼鱼鱼完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869