亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷风完成签到 ,获得积分10
5秒前
徐per爱豆完成签到 ,获得积分10
6秒前
今后应助阡陌殇殇采纳,获得10
8秒前
11秒前
14秒前
15秒前
Orange应助happy贼王采纳,获得10
18秒前
RR发布了新的文献求助10
19秒前
HUOZHUANGCHAO完成签到,获得积分10
21秒前
22秒前
Achu发布了新的文献求助10
27秒前
小葛完成签到,获得积分10
29秒前
29秒前
秋殇浅寞完成签到,获得积分10
31秒前
秋殇浅寞发布了新的文献求助30
34秒前
Owen应助月白lala采纳,获得10
36秒前
FashionBoy应助Juniorrr采纳,获得20
38秒前
38秒前
拓跋半雪发布了新的文献求助30
42秒前
happy贼王发布了新的文献求助10
42秒前
lsl完成签到 ,获得积分10
46秒前
47秒前
49秒前
52秒前
小丿丫丿丫完成签到 ,获得积分10
52秒前
happy贼王发布了新的文献求助10
55秒前
56秒前
斯文败类应助RR采纳,获得10
58秒前
不说再见发布了新的文献求助10
1分钟前
happy贼王完成签到,获得积分10
1分钟前
领导范儿应助嘚嘚采纳,获得10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
yfq1018发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
李梓航完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
kkk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253515
求助须知:如何正确求助?哪些是违规求助? 4416821
关于积分的说明 13750562
捐赠科研通 4289289
什么是DOI,文献DOI怎么找? 2353359
邀请新用户注册赠送积分活动 1350077
关于科研通互助平台的介绍 1309966