重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ent_完成签到,获得积分10
刚刚
嗯嗯嗯嗯发布了新的文献求助10
1秒前
张海鹏发布了新的文献求助10
1秒前
可一可再完成签到 ,获得积分10
2秒前
CodeCraft应助自行车v采纳,获得10
2秒前
2秒前
无花果应助YXY采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
Gaojin锦发布了新的文献求助10
3秒前
3秒前
winwey应助稳重的千凝采纳,获得10
3秒前
4秒前
Owen应助勤劳尔曼采纳,获得10
4秒前
可爱的函函应助FN_09采纳,获得10
4秒前
rita完成签到,获得积分10
5秒前
明亮冰颜完成签到,获得积分10
6秒前
李健的小迷弟应助Kail采纳,获得10
6秒前
xzy998应助sunnyqqz采纳,获得200
6秒前
林珍发布了新的文献求助10
6秒前
少艾完成签到 ,获得积分10
7秒前
chenji发布了新的文献求助30
7秒前
科研小白发布了新的文献求助10
7秒前
xyhua925完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
缓慢宛海发布了新的文献求助10
8秒前
无花果应助Jeff采纳,获得10
8秒前
9秒前
9秒前
哥谭小怪兽完成签到,获得积分10
9秒前
杨润发布了新的文献求助10
9秒前
小马甲应助ll采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545