Lightweight unmanned aerial vehicle object detection algorithm based on improved YOLOv8

计算机科学 最小边界框 人工智能 航空影像 概化理论 跳跃式监视 计算机视觉 模式识别(心理学) 图像(数学) 数学 统计
作者
Zhao Zhao-lin,Kaiming Bo,Chih‐Yu Hsu,Lyuchao Liao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-22
标识
DOI:10.3233/ida-230929
摘要

With the rapid development of unmanned aerial vehicle (UAV) technology and computer vision, real-time object detection in UAV aerial images has become a current research hotspot. However, the detection tasks in UAV aerial images face challenges such as disparate object scales, numerous small objects, and mutual occlusion. To address these issues, this paper proposes the ASM-YOLO model, which enhances the original model by replacing the Neck part of YOLOv8 with an efficient bidirectional cross-scale connections and adaptive feature fusion (ABiFPN) . Additionally, a Structural Feature Enhancement Module (SFE) is introduced to inject features extracted by the backbone network into the Neck part, enhancing inter-network information exchange. Furthermore, the MPDIoU bounding box loss function is employed to replace the original CIoU bounding box loss function. A series of experiments was conducted on the VisDrone-DET dataset, and comparisons were made with the baseline network YOLOv8s. The experimental results demonstrate that the proposed model in this study achieved reductions of 26.1% and 24.7% in terms of parameter count and model size, respectively. Additionally, during testing on the evaluation set, the proposed model exhibited improvements of 7.4% and 4.6% in the AP50 and mAP metrics, respectively, compared to the YOLOv8s baseline model, thereby validating the practicality and effectiveness of the proposed model. Subsequently, the generalizability of the algorithm was validated on the DOTA and DIOR datasets, which share similarities with aerial images captured by drones. The experimental results indicate significant enhancements on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助JunfDai采纳,获得10
1秒前
2秒前
leee完成签到,获得积分10
2秒前
z_king_d_23发布了新的文献求助10
2秒前
3秒前
4秒前
SciGPT应助小芋圆不圆采纳,获得10
4秒前
5秒前
5秒前
无限傲儿应助科研通管家采纳,获得50
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
平淡初雪应助科研通管家采纳,获得10
6秒前
daisy_chen应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
iNk应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
平淡初雪应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
lm发布了新的文献求助30
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486176
求助须知:如何正确求助?哪些是违规求助? 4585825
关于积分的说明 14406676
捐赠科研通 4516266
什么是DOI,文献DOI怎么找? 2474718
邀请新用户注册赠送积分活动 1460599
关于科研通互助平台的介绍 1433754