Enhancing the Quality of MOF Thin Films for Device Integration Through Machine Learning: A Case Study on HKUST‐1 SURMOF Optimization

材料科学 质量(理念) 薄膜 纳米技术 认识论 哲学
作者
Lena Pilz,Meike Koenig,Matthias Schwotzer,Hartmut Gliemann,Christof Wöll,Manuel Tsotsalas
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202404631
摘要

Abstract Metal–organic Frameworks (MOFs), especially as thin films, are increasingly recognized for their potential in device integration, notably in sensors and photo detectors. A critical factor in the performance of many MOF‐based devices is the quality of the MOF interfaces. Achieving MOF thin films with smooth surfaces and low defect densities is essential. Given the extensive parameter space governing MOF thin film deposition, the use of machine learning (ML) methods to optimize deposition conditions is highly beneficial. Combined with robotic fabrication, ML can more effectively explore this space than traditional methods, simultaneously varying multiple parameters to improve optimization efficiency. Importantly, ML can provide deeper insights into the synthesis of MOF thin films, an essential area of research. This study focuses on refining an HKUST‐1 SURMOF (surface‐mounted MOF) to achieve minimal surface roughness and high crystallinity, including a quantitative analysis of the importance of the various synthesis parameters. Using the SyCoFinder ML technique, thin film surface quality is markedly enhanced in just three generations created by a genetic algorithm, covering 30 distinct parameter sets. This method greatly reduces the need for extensive experimentation. Moreover, the results enhance the understanding of the vast synthesis parameter space in HKUST‐1 SURMOF growth and broaden the applications of MOF thin films in electronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭亮发布了新的文献求助10
1秒前
2秒前
动听千秋完成签到 ,获得积分10
3秒前
欣慰薯片发布了新的文献求助10
3秒前
hzwdm1发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
JavedAli完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
吸墨发布了新的文献求助50
8秒前
9秒前
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
water完成签到,获得积分10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
吸墨发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261