Enhancing the Quality of MOF Thin Films for Device Integration Through Machine Learning: A Case Study on HKUST‐1 SURMOF Optimization

材料科学 质量(理念) 薄膜 纳米技术 认识论 哲学
作者
Lena Pilz,Meike Koenig,Matthias Schwotzer,Hartmut Gliemann,Christof Wöll,Manuel Tsotsalas
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (44) 被引量:10
标识
DOI:10.1002/adfm.202404631
摘要

Abstract Metal–organic Frameworks (MOFs), especially as thin films, are increasingly recognized for their potential in device integration, notably in sensors and photo detectors. A critical factor in the performance of many MOF‐based devices is the quality of the MOF interfaces. Achieving MOF thin films with smooth surfaces and low defect densities is essential. Given the extensive parameter space governing MOF thin film deposition, the use of machine learning (ML) methods to optimize deposition conditions is highly beneficial. Combined with robotic fabrication, ML can more effectively explore this space than traditional methods, simultaneously varying multiple parameters to improve optimization efficiency. Importantly, ML can provide deeper insights into the synthesis of MOF thin films, an essential area of research. This study focuses on refining an HKUST‐1 SURMOF (surface‐mounted MOF) to achieve minimal surface roughness and high crystallinity, including a quantitative analysis of the importance of the various synthesis parameters. Using the SyCoFinder ML technique, thin film surface quality is markedly enhanced in just three generations created by a genetic algorithm, covering 30 distinct parameter sets. This method greatly reduces the need for extensive experimentation. Moreover, the results enhance the understanding of the vast synthesis parameter space in HKUST‐1 SURMOF growth and broaden the applications of MOF thin films in electronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
n0rthstar完成签到,获得积分10
刚刚
赘婿应助害羞含雁采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
雨姐科研应助S1mple采纳,获得10
4秒前
4秒前
CodeCraft应助艾永涛采纳,获得10
4秒前
4秒前
7秒前
7秒前
7秒前
整齐醉冬发布了新的文献求助10
7秒前
hrbykdxly发布了新的文献求助10
7秒前
JinghaoLi完成签到 ,获得积分10
8秒前
808bass应助Jason采纳,获得10
8秒前
苏苏完成签到,获得积分10
8秒前
8秒前
山山以川发布了新的文献求助10
9秒前
ly浩发布了新的文献求助10
9秒前
小号完成签到,获得积分10
9秒前
Jackpot完成签到 ,获得积分10
9秒前
南宫书芹完成签到,获得积分10
11秒前
Bob完成签到,获得积分10
12秒前
12秒前
Orange应助icecream采纳,获得10
12秒前
英姑应助YangYang666采纳,获得10
13秒前
梗梗发布了新的文献求助10
14秒前
天才玩家H完成签到,获得积分10
14秒前
自然画笔发布了新的文献求助10
15秒前
15秒前
隐形曼青应助依古比古采纳,获得10
16秒前
16秒前
科研通AI6应助123采纳,获得10
16秒前
16秒前
16秒前
17秒前
南宫书芹发布了新的文献求助10
17秒前
在水一方应助害羞含雁采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488