Enhancing the Quality of MOF Thin Films for Device Integration Through Machine Learning: A Case Study on HKUST‐1 SURMOF Optimization

材料科学 质量(理念) 薄膜 纳米技术 认识论 哲学
作者
Lena Pilz,Meike Koenig,Matthias Schwotzer,Hartmut Gliemann,Christof Wöll,Manuel Tsotsalas
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202404631
摘要

Abstract Metal–organic Frameworks (MOFs), especially as thin films, are increasingly recognized for their potential in device integration, notably in sensors and photo detectors. A critical factor in the performance of many MOF‐based devices is the quality of the MOF interfaces. Achieving MOF thin films with smooth surfaces and low defect densities is essential. Given the extensive parameter space governing MOF thin film deposition, the use of machine learning (ML) methods to optimize deposition conditions is highly beneficial. Combined with robotic fabrication, ML can more effectively explore this space than traditional methods, simultaneously varying multiple parameters to improve optimization efficiency. Importantly, ML can provide deeper insights into the synthesis of MOF thin films, an essential area of research. This study focuses on refining an HKUST‐1 SURMOF (surface‐mounted MOF) to achieve minimal surface roughness and high crystallinity, including a quantitative analysis of the importance of the various synthesis parameters. Using the SyCoFinder ML technique, thin film surface quality is markedly enhanced in just three generations created by a genetic algorithm, covering 30 distinct parameter sets. This method greatly reduces the need for extensive experimentation. Moreover, the results enhance the understanding of the vast synthesis parameter space in HKUST‐1 SURMOF growth and broaden the applications of MOF thin films in electronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助自由冬天采纳,获得10
刚刚
精忠报国完成签到,获得积分10
1秒前
ding应助沉静的曼荷采纳,获得10
1秒前
glomming完成签到 ,获得积分10
4秒前
通宵不是熬夜完成签到,获得积分20
4秒前
4秒前
研友_VZG7GZ应助PZL采纳,获得10
4秒前
5秒前
ANGEK完成签到,获得积分10
6秒前
zk完成签到,获得积分10
6秒前
zz发布了新的文献求助10
7秒前
九转科研蛊完成签到,获得积分10
7秒前
Owen应助王先生采纳,获得10
8秒前
8秒前
慕青应助Jiao采纳,获得10
9秒前
健忘的飞雪完成签到,获得积分10
10秒前
洋芋锅巴发布了新的文献求助10
11秒前
12秒前
Coraline发布了新的文献求助20
13秒前
元友容完成签到 ,获得积分10
13秒前
Yn_发布了新的文献求助10
14秒前
15秒前
杰尼龟完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
20秒前
土豆侠完成签到 ,获得积分10
20秒前
20秒前
请叫我风吹麦浪应助ZYN采纳,获得10
20秒前
务实元风发布了新的文献求助10
21秒前
21秒前
Jiao发布了新的文献求助10
21秒前
dhyzf1214完成签到,获得积分10
21秒前
orixero应助机智幻嫣采纳,获得10
23秒前
24秒前
25秒前
26秒前
李思超完成签到 ,获得积分10
26秒前
allton发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075