Enhancing the Quality of MOF Thin Films for Device Integration Through Machine Learning: A Case Study on HKUST‐1 SURMOF Optimization

材料科学 质量(理念) 薄膜 纳米技术 认识论 哲学
作者
Lena Pilz,Meike Koenig,Matthias Schwotzer,Hartmut Gliemann,Christof Wöll,Manuel Tsotsalas
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202404631
摘要

Abstract Metal–organic Frameworks (MOFs), especially as thin films, are increasingly recognized for their potential in device integration, notably in sensors and photo detectors. A critical factor in the performance of many MOF‐based devices is the quality of the MOF interfaces. Achieving MOF thin films with smooth surfaces and low defect densities is essential. Given the extensive parameter space governing MOF thin film deposition, the use of machine learning (ML) methods to optimize deposition conditions is highly beneficial. Combined with robotic fabrication, ML can more effectively explore this space than traditional methods, simultaneously varying multiple parameters to improve optimization efficiency. Importantly, ML can provide deeper insights into the synthesis of MOF thin films, an essential area of research. This study focuses on refining an HKUST‐1 SURMOF (surface‐mounted MOF) to achieve minimal surface roughness and high crystallinity, including a quantitative analysis of the importance of the various synthesis parameters. Using the SyCoFinder ML technique, thin film surface quality is markedly enhanced in just three generations created by a genetic algorithm, covering 30 distinct parameter sets. This method greatly reduces the need for extensive experimentation. Moreover, the results enhance the understanding of the vast synthesis parameter space in HKUST‐1 SURMOF growth and broaden the applications of MOF thin films in electronic and optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐轩发布了新的文献求助10
1秒前
zz_1997完成签到 ,获得积分10
1秒前
李健应助wenxianxiazai123采纳,获得10
2秒前
一只猪发布了新的文献求助10
3秒前
秀丽的犀牛完成签到,获得积分10
3秒前
桃博完成签到,获得积分10
4秒前
严三笑发布了新的文献求助10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
虚幻访冬应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
孙孙应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
666发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
华仔应助小猪快跑采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543