Schedule-cost optimization in high-rise buildings considering uncertainty

地铁列车时刻表 高层建筑 运筹学 计算机科学 建筑工程 土木工程 数学优化 工程类 环境科学 结构工程 数学 操作系统
作者
Jinting Huang,Ankang Ji,Zhonghua Xiao,Limao Zhang
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:32 (9): 5657-5681 被引量:5
标识
DOI:10.1108/ecam-12-2023-1217
摘要

Purpose The paper aims to develop a useful tool that can reliably and accurately find the critical paths of high-rise buildings and provide optimal solutions considering the uncertainty based on Monte Carlo simulation (MCS) to enhance project implementation performance by assisting site workers and project managers in high-rise building engineering. Design/methodology/approach This research proposes an approach integrating the improved nondominated sorting genetic algorithm II (NSGA-II) considering uncertainty and delay scenarios simulated by MCS with the technique for order preference by similarity to an ideal solution. Findings The results demonstrate that the proposed approach is capable of generating optimal solutions, which can improve the construction performance of high-rise buildings and guide the implementation management for shortening building engineering project schedule and cost under the delay conditions. Research limitations/implications In this study, only the construction data of the two floors was focused due to the project at the construction stage, and future work can analyze the whole construction stage of the high-rise building to examine the performance of the approach, and the multi-objective optimization (MOO) only considered two factors as objectives, where more objectives, such as schedule, cost and quality, can be expanded in future. Practical implications The approach proposed in this research can be successfully applied to the construction process of high-rise buildings, which can be a guidance basis for optimizing the performance of high-rise building construction. Originality/value The innovations and advantages derived from the proposed approach underline its capability to handle project construction scheduling optimization (CSO) problems with different performance objectives under uncertainty and delay conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助九陌采纳,获得10
刚刚
杨立胜发布了新的文献求助10
刚刚
刚刚
猫小猪发布了新的文献求助10
1秒前
huangr123完成签到 ,获得积分10
2秒前
han发布了新的文献求助10
3秒前
3秒前
4秒前
wanci应助猫猫无敌采纳,获得10
4秒前
追寻奇迹完成签到 ,获得积分10
5秒前
房天川发布了新的文献求助20
5秒前
然然发布了新的文献求助20
6秒前
是玥玥啊完成签到,获得积分10
6秒前
7秒前
Tonson完成签到,获得积分10
8秒前
达分歧完成签到 ,获得积分10
9秒前
林林完成签到 ,获得积分10
9秒前
跳跃猫咪完成签到 ,获得积分10
9秒前
Ayin完成签到,获得积分10
9秒前
acuis发布了新的文献求助10
10秒前
NNi发布了新的文献求助10
10秒前
10秒前
10秒前
忐忑的果汁完成签到 ,获得积分10
11秒前
11秒前
12秒前
ieeat发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
端正小猫完成签到,获得积分10
13秒前
志摩001完成签到,获得积分10
13秒前
14秒前
九陌发布了新的文献求助10
14秒前
yuilcl完成签到,获得积分10
14秒前
16秒前
JYAQI关注了科研通微信公众号
16秒前
16秒前
cx应助佳佳528采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400