Schedule-cost optimization in high-rise buildings considering uncertainty

地铁列车时刻表 高层建筑 运筹学 计算机科学 建筑工程 土木工程 数学优化 工程类 环境科学 结构工程 数学 操作系统
作者
Jinting Huang,Ankang Ji,Zhonghua Xiao,Limao Zhang
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/ecam-12-2023-1217
摘要

Purpose The paper aims to develop a useful tool that can reliably and accurately find the critical paths of high-rise buildings and provide optimal solutions considering the uncertainty based on Monte Carlo simulation (MCS) to enhance project implementation performance by assisting site workers and project managers in high-rise building engineering. Design/methodology/approach This research proposes an approach integrating the improved nondominated sorting genetic algorithm II (NSGA-II) considering uncertainty and delay scenarios simulated by MCS with the technique for order preference by similarity to an ideal solution. Findings The results demonstrate that the proposed approach is capable of generating optimal solutions, which can improve the construction performance of high-rise buildings and guide the implementation management for shortening building engineering project schedule and cost under the delay conditions. Research limitations/implications In this study, only the construction data of the two floors was focused due to the project at the construction stage, and future work can analyze the whole construction stage of the high-rise building to examine the performance of the approach, and the multi-objective optimization (MOO) only considered two factors as objectives, where more objectives, such as schedule, cost and quality, can be expanded in future. Practical implications The approach proposed in this research can be successfully applied to the construction process of high-rise buildings, which can be a guidance basis for optimizing the performance of high-rise building construction. Originality/value The innovations and advantages derived from the proposed approach underline its capability to handle project construction scheduling optimization (CSO) problems with different performance objectives under uncertainty and delay conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
全明星阿杜完成签到,获得积分10
2秒前
yuliuism完成签到,获得积分10
2秒前
3秒前
宣智发布了新的文献求助10
3秒前
4秒前
4秒前
tinale_huang关注了科研通微信公众号
5秒前
超大碗芋泥完成签到,获得积分10
5秒前
unless完成签到,获得积分10
5秒前
在水一方应助花卷采纳,获得10
6秒前
6秒前
彭伟盼发布了新的文献求助10
7秒前
7秒前
jichups完成签到,获得积分10
7秒前
一期一会完成签到,获得积分10
7秒前
9秒前
huadong发布了新的文献求助10
9秒前
CipherSage应助wuxunxun2015采纳,获得10
11秒前
小乖完成签到,获得积分20
12秒前
火柴发布了新的文献求助10
12秒前
顺利中发布了新的文献求助10
13秒前
DG完成签到,获得积分10
13秒前
masterwjc完成签到,获得积分10
13秒前
yznfly应助宣智采纳,获得200
13秒前
15秒前
萧晓完成签到 ,获得积分10
16秒前
16秒前
Frank发布了新的文献求助10
16秒前
16秒前
小确幸发布了新的文献求助10
17秒前
17秒前
舒适的石头完成签到,获得积分10
19秒前
20秒前
goforit完成签到,获得积分0
20秒前
科研通AI2S应助王帅采纳,获得10
21秒前
翁sir发布了新的文献求助10
21秒前
munire发布了新的文献求助10
21秒前
科研通AI6应助pjson15376449841采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812