Advancing Real-World Image Dehazing: Perspective, Modules, and Training

透视图(图形) 计算机科学 人工智能 计算机视觉 培训(气象学) 图像(数学) 图像处理 计算机图形学(图像) 物理 气象学
作者
Yuxin Feng,Long Ma,Xiaozhe Meng,Fan Zhou,Risheng Liu,Zhuo Su
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:1
标识
DOI:10.1109/tpami.2024.3416731
摘要

Restoring high-quality images from degraded hazy observations is a fundamental and essential task in the field of computer vision. While deep models have achieved significant success with synthetic data, their effectiveness in real-world scenarios remains uncertain. To improve adaptability in real-world environments, we construct an entirely new computational framework by making efforts from three key aspects: imaging perspective, structural modules, and training strategies. To simulate the often-overlooked multiple degradation attributes found in real-world hazy images, we develop a new hazy imaging model that encapsulates multiple degraded factors, assisting in bridging the domain gap between synthetic and real-world image spaces. In contrast to existing approaches that primarily address the inverse imaging process, we design a new dehazing network following the "localization-and-removal" pipeline. The degradation localization module aims to assist in network capture discriminative haze-related feature information, and the degradation removal module focuses on eliminating dependencies between features by learning a weighting matrix of training samples, thereby avoiding spurious correlations of extracted features in existing deep methods. We also define a new Gaussian perceptual contrastive loss to further constrain the network to update in the direction of the natural dehazing. Regarding multiple full/no-reference image quality indicators and subjective visual effects on challenging RTTS, URHI, and Fattal real hazy datasets, the proposed method has superior performance and is better than the current state-of-the-art methods. See more results: https://github.com/fyxnl/KA Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Good_小鬼完成签到,获得积分10
刚刚
Jasper应助美味的薯片采纳,获得80
刚刚
1秒前
我是老大应助Jade采纳,获得10
1秒前
Aurora发布了新的文献求助10
1秒前
闲看花季发布了新的文献求助10
2秒前
假装超人会飞完成签到,获得积分10
2秒前
3秒前
天天快乐应助满满采纳,获得10
3秒前
4秒前
4秒前
5秒前
邹友亮发布了新的文献求助10
6秒前
佳佳发布了新的文献求助30
6秒前
6秒前
7秒前
orixero应助孙亦沈采纳,获得10
8秒前
tdd完成签到,获得积分20
9秒前
CatherineRR发布了新的文献求助20
10秒前
miller发布了新的文献求助10
12秒前
12秒前
碧蓝紫雪发布了新的文献求助10
14秒前
15秒前
就是躺完成签到 ,获得积分10
15秒前
bkagyin应助pfliu采纳,获得10
15秒前
Nekozzzz发布了新的文献求助10
15秒前
16秒前
搜集达人应助rou采纳,获得10
16秒前
无心的小兔子完成签到,获得积分10
17秒前
无花果应助闲看花季采纳,获得10
18秒前
三三得九发布了新的文献求助10
19秒前
19秒前
所所应助健忘的初翠采纳,获得10
19秒前
结实的啤酒完成签到 ,获得积分10
20秒前
20秒前
kiminonawa发布了新的文献求助10
21秒前
wanghaowen完成签到,获得积分10
21秒前
22秒前
Ting发布了新的文献求助10
22秒前
niu完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706