Multi‐Instance Learning for Vocal Fold Leukoplakia Diagnosis Using White Light and Narrow‐Band Imaging: A Multicenter Study

折叠(高阶函数) 人工智能 窄带成像 白光 医学 计算机科学 放射科 光学 物理 内窥镜检查 程序设计语言
作者
Cheng‐Wei Tie,Deyang Li,Ji‐Qing Zhu,M. Wang,Jianhui Wang,Bing‐Hong Chen,Ying Li,Sen Zhang,Lin Liu,Li Guo,Yang Long,Liqun Yang,Wei Jiao,Feng Jiang,Zhiqiang Zhao,Guiqi Wang,Wei Zhang,Quan‐Mao Zhang,Xiao‐Guang Ni
出处
期刊:Laryngoscope [Wiley]
卷期号:134 (10): 4321-4328
标识
DOI:10.1002/lary.31537
摘要

Objectives Vocal fold leukoplakia (VFL) is a precancerous lesion of laryngeal cancer, and its endoscopic diagnosis poses challenges. We aim to develop an artificial intelligence (AI) model using white light imaging (WLI) and narrow‐band imaging (NBI) to distinguish benign from malignant VFL. Methods A total of 7057 images from 426 patients were used for model development and internal validation. Additionally, 1617 images from two other hospitals were used for model external validation. Modeling learning based on WLI and NBI modalities was conducted using deep learning combined with a multi‐instance learning approach (MIL). Furthermore, 50 prospectively collected videos were used to evaluate real‐time model performance. A human‐machine comparison involving 100 patients and 12 laryngologists assessed the real‐world effectiveness of the model. Results The model achieved the highest area under the receiver operating characteristic curve (AUC) values of 0.868 and 0.884 in the internal and external validation sets, respectively. AUC in the video validation set was 0.825 (95% CI: 0.704–0.946). In the human‐machine comparison, AI significantly improved AUC and accuracy for all laryngologists ( p < 0.05). With the assistance of AI, the diagnostic abilities and consistency of all laryngologists improved. Conclusions Our multicenter study developed an effective AI model using MIL and fusion of WLI and NBI images for VFL diagnosis, particularly aiding junior laryngologists. However, further optimization and validation are necessary to fully assess its potential impact in clinical settings. Level of Evidence 3 Laryngoscope , 134:4321–4328, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kaizt完成签到,获得积分10
刚刚
小二郎应助野性的胡萝卜采纳,获得10
3秒前
鹅蛋黄完成签到,获得积分10
4秒前
mhl11应助老朱采纳,获得10
4秒前
cctv18应助ludwig采纳,获得10
5秒前
李铎完成签到,获得积分10
5秒前
5秒前
默默汉堡发布了新的文献求助10
5秒前
GankhuyagJavzan完成签到,获得积分10
7秒前
jdl发布了新的文献求助10
7秒前
独特的紫蓝应助汪哈七采纳,获得30
7秒前
SONG完成签到,获得积分10
8秒前
彭于彦祖应助倩倩采纳,获得30
8秒前
赖建琛完成签到 ,获得积分10
8秒前
8秒前
传奇3应助MY采纳,获得10
10秒前
平淡雪枫完成签到 ,获得积分10
10秒前
ST发布了新的文献求助10
11秒前
FashionBoy应助yanyan采纳,获得10
13秒前
ludwig给ludwig的求助进行了留言
14秒前
ppppp完成签到,获得积分10
14秒前
华仔应助liuqizong123采纳,获得10
15秒前
我在云端完成签到,获得积分10
15秒前
mhl11应助拉长的思卉采纳,获得10
18秒前
野性的胡萝卜完成签到,获得积分10
21秒前
21秒前
喻白玉完成签到,获得积分10
21秒前
冷艳的竺完成签到,获得积分10
21秒前
23秒前
24秒前
jzyy完成签到 ,获得积分10
24秒前
天天快乐应助成就的安阳采纳,获得10
27秒前
27秒前
山月完成签到,获得积分10
27秒前
Eva发布了新的文献求助10
27秒前
无限平凡发布了新的文献求助10
28秒前
花花完成签到,获得积分10
33秒前
33秒前
Reybor应助务实大神采纳,获得20
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257985
求助须知:如何正确求助?哪些是违规求助? 2899850
关于积分的说明 8307829
捐赠科研通 2569098
什么是DOI,文献DOI怎么找? 1395469
科研通“疑难数据库(出版商)”最低求助积分说明 653107
邀请新用户注册赠送积分活动 630990