亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vision transformer promotes cancer diagnosis: A comprehensive review

计算机科学 变压器 人工智能 机器学习 电气工程 工程类 电压
作者
Xiaoyan Jiang,Shuihua Wang‎,Yudong Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124113-124113 被引量:2
标识
DOI:10.1016/j.eswa.2024.124113
摘要

The approaches based on vision transformers (ViTs) are advancing the field of medical artificial intelligence (AI) and cancer diagnosis. Recently, many researchers have developed artificial intelligence methods for cancer diagnosis based on ViTs. In this paper, 98 pertinent articles since 2020 were carefully chosen from digital databases, including Google scholar, Elsevier, and Springer Link, to review the research progress of artificial intelligence methods for cancer imaging based on ViT. Method: The basic structure of ViT is introduced, and corresponding modules such as patch embedding, positional embedding, transformer encoder, multi-head self-attention (MSA), layer normalization (LN), and residual connections, multilayer perceptron (MLP) are elaborated; a comprehensive review of improved ViT models in the medical field is presented. The application of ViT technology in cancer analysis based on medical images was reviewed. Results: ViT has achieved great success in cancer diagnosis based on medical images, showing its advantages in image classification, image reconstruction, image detection, image segmentation, image registration, image fusion, and other tasks. In these task studies, the most common task is cancer image classification and segmentation. There is still a lot of room for improvement in the aspects of multi-task learning, multi-modal learning, model generality, generalization ability, and explainability, and it also faces the mutual restriction of model scale and performance. Conclusion: The ViT training model for cancer diagnosis can potentially improve. The ViT model of self-supervised learning and semi-supervised learning mechanism is promising research. The lightweight attention module design, ViTs based on mobile networks, and the development of 3DViT will promote cancer diagnosis based on medical images to be more accurate and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zilhua发布了新的文献求助10
2秒前
2秒前
zilhua完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
ASXC完成签到,获得积分20
31秒前
32秒前
32秒前
量子星尘发布了新的文献求助30
38秒前
Vaseegara完成签到 ,获得积分10
43秒前
49秒前
wanci应助zzzxh采纳,获得10
1分钟前
1分钟前
RAIN发布了新的文献求助10
1分钟前
852应助RAIN采纳,获得10
1分钟前
1分钟前
小飞猪发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yx_cheng应助科研通管家采纳,获得30
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
Milton_z完成签到 ,获得积分0
4分钟前
冬菇拉米发布了新的文献求助10
4分钟前
4分钟前
FashionBoy应助冬菇拉米采纳,获得10
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
大意的晓亦完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
TXZ06完成签到,获得积分10
5分钟前
duyitao完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
yx_cheng应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
RAIN发布了新的文献求助10
6分钟前
zoey发布了新的文献求助10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008067
求助须知:如何正确求助?哪些是违规求助? 3547878
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188