Vision transformer promotes cancer diagnosis: A comprehensive review

计算机科学 变压器 人工智能 机器学习 电气工程 工程类 电压
作者
Xiaoyan Jiang,Shuihua Wang‎,Yudong Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124113-124113
标识
DOI:10.1016/j.eswa.2024.124113
摘要

The approaches based on vision transformers (ViTs) are advancing the field of medical artificial intelligence (AI) and cancer diagnosis. Recently, many researchers have developed artificial intelligence methods for cancer diagnosis based on ViTs. In this paper, 98 pertinent articles since 2020 were carefully chosen from digital databases, including Google scholar, Elsevier, and Springer Link, to review the research progress of artificial intelligence methods for cancer imaging based on ViT. Method: The basic structure of ViT is introduced, and corresponding modules such as patch embedding, positional embedding, transformer encoder, multi-head self-attention (MSA), layer normalization (LN), and residual connections, multilayer perceptron (MLP) are elaborated; a comprehensive review of improved ViT models in the medical field is presented. The application of ViT technology in cancer analysis based on medical images was reviewed. Results: ViT has achieved great success in cancer diagnosis based on medical images, showing its advantages in image classification, image reconstruction, image detection, image segmentation, image registration, image fusion, and other tasks. In these task studies, the most common task is cancer image classification and segmentation. There is still a lot of room for improvement in the aspects of multi-task learning, multi-modal learning, model generality, generalization ability, and explainability, and it also faces the mutual restriction of model scale and performance. Conclusion: The ViT training model for cancer diagnosis can potentially improve. The ViT model of self-supervised learning and semi-supervised learning mechanism is promising research. The lightweight attention module design, ViTs based on mobile networks, and the development of 3DViT will promote cancer diagnosis based on medical images to be more accurate and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
htumfg完成签到,获得积分10
刚刚
刚刚
1秒前
云野关注了科研通微信公众号
2秒前
糖葫芦发布了新的文献求助10
2秒前
此时留念发布了新的文献求助30
3秒前
团怪完成签到 ,获得积分10
3秒前
粗暴的遥发布了新的文献求助10
3秒前
木偶发布了新的文献求助10
4秒前
gelinhao完成签到,获得积分10
4秒前
薰硝壤应助Jeff采纳,获得10
6秒前
7秒前
7秒前
11秒前
白佐帅关注了科研通微信公众号
12秒前
13秒前
英俊的铭应助沉迷科研采纳,获得10
15秒前
包子牛奶发布了新的文献求助10
17秒前
彭于晏应助喝水吗采纳,获得10
17秒前
17秒前
18秒前
神奇的种子完成签到,获得积分10
19秒前
20秒前
稳重的若雁应助Charon采纳,获得10
21秒前
丘比特应助Charon采纳,获得10
21秒前
Huang完成签到 ,获得积分0
21秒前
草木发布了新的文献求助10
21秒前
Hello应助木偶采纳,获得10
21秒前
Slide发布了新的文献求助10
22秒前
23秒前
烟花应助一十六采纳,获得10
24秒前
24秒前
白佐帅发布了新的文献求助10
26秒前
大个应助mufcyang采纳,获得10
26秒前
fmr完成签到 ,获得积分10
27秒前
简单奎发布了新的文献求助10
27秒前
丹曦完成签到,获得积分10
28秒前
沉迷科研发布了新的文献求助10
28秒前
尊敬淇完成签到 ,获得积分10
29秒前
苹果蜗牛完成签到 ,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237