Vision transformer promotes cancer diagnosis: A comprehensive review

计算机科学 变压器 人工智能 机器学习 电气工程 工程类 电压
作者
Xiaoyan Jiang,Shuihua Wang‎,Yudong Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124113-124113 被引量:2
标识
DOI:10.1016/j.eswa.2024.124113
摘要

The approaches based on vision transformers (ViTs) are advancing the field of medical artificial intelligence (AI) and cancer diagnosis. Recently, many researchers have developed artificial intelligence methods for cancer diagnosis based on ViTs. In this paper, 98 pertinent articles since 2020 were carefully chosen from digital databases, including Google scholar, Elsevier, and Springer Link, to review the research progress of artificial intelligence methods for cancer imaging based on ViT. Method: The basic structure of ViT is introduced, and corresponding modules such as patch embedding, positional embedding, transformer encoder, multi-head self-attention (MSA), layer normalization (LN), and residual connections, multilayer perceptron (MLP) are elaborated; a comprehensive review of improved ViT models in the medical field is presented. The application of ViT technology in cancer analysis based on medical images was reviewed. Results: ViT has achieved great success in cancer diagnosis based on medical images, showing its advantages in image classification, image reconstruction, image detection, image segmentation, image registration, image fusion, and other tasks. In these task studies, the most common task is cancer image classification and segmentation. There is still a lot of room for improvement in the aspects of multi-task learning, multi-modal learning, model generality, generalization ability, and explainability, and it also faces the mutual restriction of model scale and performance. Conclusion: The ViT training model for cancer diagnosis can potentially improve. The ViT model of self-supervised learning and semi-supervised learning mechanism is promising research. The lightweight attention module design, ViTs based on mobile networks, and the development of 3DViT will promote cancer diagnosis based on medical images to be more accurate and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
徐志豪发布了新的文献求助10
4秒前
nick完成签到,获得积分10
4秒前
4秒前
小宋发布了新的文献求助10
4秒前
5秒前
6秒前
天天快乐应助喜悦的怀梦采纳,获得10
7秒前
超级瑶瑶发布了新的文献求助10
7秒前
穆思柔完成签到,获得积分10
7秒前
QiranSheng发布了新的文献求助10
8秒前
何大春发布了新的文献求助10
8秒前
帅过吴彦祖完成签到,获得积分10
9秒前
zzyy完成签到,获得积分10
9秒前
现代rong完成签到,获得积分10
10秒前
高骏伟发布了新的文献求助10
10秒前
辛巴先生完成签到 ,获得积分10
10秒前
li完成签到 ,获得积分10
12秒前
hp完成签到,获得积分20
13秒前
有轨电车前的红绿灯完成签到,获得积分10
13秒前
13秒前
monere发布了新的文献求助10
13秒前
14秒前
14秒前
何大春完成签到,获得积分10
15秒前
15秒前
15秒前
MoMo发布了新的文献求助10
16秒前
16秒前
Rookie99完成签到,获得积分10
16秒前
16秒前
ustcliyang完成签到,获得积分10
17秒前
小雅子完成签到,获得积分10
18秒前
Cheecity发布了新的文献求助10
19秒前
科目三应助任小波666采纳,获得10
19秒前
19秒前
zrx15986完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
translating meaning 500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4903950
求助须知:如何正确求助?哪些是违规求助? 4182306
关于积分的说明 12985134
捐赠科研通 3947927
什么是DOI,文献DOI怎么找? 2165321
邀请新用户注册赠送积分活动 1183731
关于科研通互助平台的介绍 1090149