The influence of the number of tree searches on maximum likelihood inference in phylogenomics

系统基因组学 树(集合论) 推论 生物 超级矩阵 最大似然 系统发育学 进化生物学 计算机科学 人工智能 数学 统计 组合数学 基因 遗传学 克莱德 当前代数 仿射李代数 纯数学 域代数上的
作者
Chao Liu,Xiaofan Zhou,Yuanning Li,Chris Todd Hittinger,Ronghui Pan,Jinyan Huang,Xue‐Xin Chen,Antonis Rokas,Yun Chen,Xing‐Xing Shen
出处
期刊:Systematic Biology [Oxford University Press]
标识
DOI:10.1093/sysbio/syae031
摘要

Abstract Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路以筠完成签到,获得积分10
刚刚
刚刚
刚刚
柒月完成签到,获得积分10
1秒前
忆楠完成签到,获得积分20
1秒前
1秒前
大傻春完成签到 ,获得积分10
2秒前
MRCHONG发布了新的文献求助10
2秒前
墨翎完成签到,获得积分20
3秒前
程程程程完成签到,获得积分10
4秒前
忆楠发布了新的文献求助10
4秒前
可爱的函函应助柒月采纳,获得10
5秒前
NexusExplorer应助钟是一梦采纳,获得10
5秒前
zhangscience发布了新的文献求助10
7秒前
YYJ25发布了新的文献求助10
7秒前
科研通AI5应助liyanglin采纳,获得10
7秒前
7秒前
8秒前
shuangcheng完成签到,获得积分20
9秒前
可爱的函函应助周周采纳,获得10
10秒前
我是125应助昵称采纳,获得10
10秒前
11秒前
小赵发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
情怀应助zhangscience采纳,获得10
13秒前
Doctor_Mill完成签到,获得积分10
14秒前
14秒前
思源应助学习猴采纳,获得10
14秒前
Lavendar完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
钟是一梦发布了新的文献求助10
19秒前
19秒前
YYJ25发布了新的文献求助10
19秒前
满意冷荷完成签到,获得积分10
19秒前
21秒前
所所应助侦察兵采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849