Two-dimensional Li+ ionic hopping in Li3InCl6 as revealed by diffusion-induced nuclear spin relaxation

反向 离子键合 扩散 离子电导率 放松(心理学) 三元运算 物理 电解质 材料科学 热力学 离子 结晶学 计算机科学 化学 数学 量子力学 几何学 电极 社会心理学 心理学 程序设计语言
作者
Florian Stainer,Martin Wilkening
出处
期刊:Physical review [American Physical Society]
卷期号:109 (17) 被引量:1
标识
DOI:10.1103/physrevb.109.174304
摘要

Ternary Li halides, such as ${\mathrm{Li}}_{3}{\text{Me}X}_{6}$ with, e.g., Me = In, Sc, Y and $X$ = Cl, Br, are the center of attention for battery applications, as these materials might serve as ionic electrolytes. To fulfill their function, such electrolytes must have an extraordinarily high ionic ${\mathrm{Li}}^{+}$ conductivity. Layer-structured ${\mathrm{Li}}_{3}{\mathrm{InCl}}_{6}$ represents such a candidate; however, understanding the origin of the rapid ${\mathrm{Li}}^{+}$ exchange processes needs further investigation. Spatially restricted, that is, low-dimensional particle diffusion, might offer an explanation for fast ion dynamics. It is, however, challenging to provide evidence for 2D diffusion at the atomic scale when dealing with polycrystalline powder samples. Here, we use purely diffusion-induced $^{7}\mathrm{Li}$ nuclear magnetic spin relaxation to detect anomalies that unambiguously show that 2D Li diffusion is chiefly responsible for the dynamic processes in a ${\mathrm{Li}}_{3}{\mathrm{InCl}}_{6}$ powder sample the present paper focusses on. The change of the spin-lattice relaxation rate $1/{T}_{1}$ as a function of inverse temperature $1/T$ passes through a rate peak that strictly follows asymmetric behavior. This feature is in excellent agreement with the model of P. M. Richards [Solid State Commun. 25, 1019 (1978)], suggesting a logarithmic spectral density function $J$ to fully describe 2D diffusion. Hence, ${\mathrm{Li}}_{3}{\mathrm{InCl}}_{6}$ belongs to the very rare examples for which 2D ${\mathrm{Li}}^{+}$ diffusion has been immaculately verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘春燕完成签到,获得积分20
2秒前
无辜的鼠标完成签到,获得积分10
2秒前
等天黑完成签到,获得积分10
2秒前
斯文败类应助林狗采纳,获得10
3秒前
鹏程完成签到 ,获得积分10
3秒前
科研通AI2S应助林狗采纳,获得10
3秒前
慕青应助林狗采纳,获得10
3秒前
小二郎应助林狗采纳,获得10
3秒前
香蕉觅云应助林狗采纳,获得10
3秒前
桐桐应助林狗采纳,获得10
3秒前
orixero应助林狗采纳,获得10
3秒前
Hello应助林狗采纳,获得10
3秒前
星辰大海应助林狗采纳,获得10
3秒前
4秒前
黑白完成签到 ,获得积分10
5秒前
5秒前
6秒前
Hello应助XINWU采纳,获得10
7秒前
QDU应助如意伟诚采纳,获得20
8秒前
彭于晏应助lxz采纳,获得10
8秒前
9秒前
Ieklos完成签到,获得积分10
9秒前
nihao完成签到,获得积分20
9秒前
xx发布了新的文献求助10
9秒前
qqqq完成签到,获得积分10
10秒前
11秒前
爆米花应助屈春洋采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
圆锥香蕉应助科研通管家采纳,获得20
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
曾无忧应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
敬老院N号应助科研通管家采纳,获得30
14秒前
WJH应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867