亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-Pressure Prediction Method for Formation Based on Xgboost-gnn Hybrid Model

计算机科学 人工智能
作者
Lu Zou,Ming Tang,Shiming He,Hanchang Wang,Xinyu Guo
标识
DOI:10.2118/219095-ms
摘要

Abstract Accurate prediction of Three-Pressure data in geological formations can assist in determining drilling fluid design, wellbore stability assessment, and optimization of drilling parameters, thereby reducing the probability of drilling risks. Conventional methods for predicting triplet pressure in geological formations often involve complex calculations, numerous empirical parameters, low prediction accuracy, limited universality, and a certain degree of lag. Therefore, there is an urgent need for new methods that are efficient, simple, and accurate in predicting triplet pressure in geological formations. To address the aforementioned issues, this study focuses on the Penglai gas area in the Sichuan Basin. By employing the XGBoost algorithm, three well logging parameters, namely acoustic time difference, compensating density, and natural gamma, are selected to classify the strata into two types: clastic rocks and carbonate rocks. Additionally, using 11 well logging and drilling parameters, including well depth, acoustic time difference, compensating density, natural gamma, drilling time, drilling pressure, and torque, a graph neural network (GNN) is applied to capture the spatial geological features of the strata. Separate GNN prediction models are established for both clastic rocks and carbonate rocks, and the predicted results are compared and validated against field-measured data. The results indicate that the XGBoost algorithm achieves a classification accuracy of 94.31% and an AUC of 0.99. The GNN prediction models exhibit good accuracy and stability. When compared with the field-measured data, the clastic rock model shows an average MAPE of 3.963% and an average R2 value of 0.869 for the testing set, while the carbonate rock model shows an average MAPE of 1.681% and an average R2 value of 0.885 for the testing set. Compared with conventional rock mechanics three-layer pressure prediction methods such as the Eaton method, the XGBoost-GNN algorithm demonstrates higher accuracy, precision, stability, and more accurate data for predicting layer positions. By utilizing the XGBoost-GNN algorithm, this study proposes a classification-first, prediction-second methodology, which effectively captures the spatial and geological features of the strata by modeling the graph structure. This approach provides more accurate prediction results and supports drilling engineering design and safe and efficient drilling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
共享精神应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
爆米花应助YJ888采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
U87完成签到,获得积分10
2分钟前
2分钟前
林新宇发布了新的文献求助10
2分钟前
桐桐应助林新宇采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
林新宇发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
林新宇发布了新的文献求助10
3分钟前
香蕉觅云应助林新宇采纳,获得10
3分钟前
大个应助koubi采纳,获得10
3分钟前
NexusExplorer应助林新宇采纳,获得10
3分钟前
3分钟前
YJ888发布了新的文献求助10
3分钟前
3分钟前
林新宇发布了新的文献求助10
3分钟前
3分钟前
Owen应助YJ888采纳,获得10
3分钟前
3分钟前
3分钟前
koubi发布了新的文献求助10
3分钟前
lyncee完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543197
求助须知:如何正确求助?哪些是违规求助? 4629393
关于积分的说明 14611153
捐赠科研通 4570669
什么是DOI,文献DOI怎么找? 2505859
邀请新用户注册赠送积分活动 1483108
关于科研通互助平台的介绍 1454424