已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-Pressure Prediction Method for Formation Based on Xgboost-gnn Hybrid Model

计算机科学 人工智能
作者
Lu Zou,Ming Tang,Shiming He,Hanchang Wang,Xinyu Guo
标识
DOI:10.2118/219095-ms
摘要

Abstract Accurate prediction of Three-Pressure data in geological formations can assist in determining drilling fluid design, wellbore stability assessment, and optimization of drilling parameters, thereby reducing the probability of drilling risks. Conventional methods for predicting triplet pressure in geological formations often involve complex calculations, numerous empirical parameters, low prediction accuracy, limited universality, and a certain degree of lag. Therefore, there is an urgent need for new methods that are efficient, simple, and accurate in predicting triplet pressure in geological formations. To address the aforementioned issues, this study focuses on the Penglai gas area in the Sichuan Basin. By employing the XGBoost algorithm, three well logging parameters, namely acoustic time difference, compensating density, and natural gamma, are selected to classify the strata into two types: clastic rocks and carbonate rocks. Additionally, using 11 well logging and drilling parameters, including well depth, acoustic time difference, compensating density, natural gamma, drilling time, drilling pressure, and torque, a graph neural network (GNN) is applied to capture the spatial geological features of the strata. Separate GNN prediction models are established for both clastic rocks and carbonate rocks, and the predicted results are compared and validated against field-measured data. The results indicate that the XGBoost algorithm achieves a classification accuracy of 94.31% and an AUC of 0.99. The GNN prediction models exhibit good accuracy and stability. When compared with the field-measured data, the clastic rock model shows an average MAPE of 3.963% and an average R2 value of 0.869 for the testing set, while the carbonate rock model shows an average MAPE of 1.681% and an average R2 value of 0.885 for the testing set. Compared with conventional rock mechanics three-layer pressure prediction methods such as the Eaton method, the XGBoost-GNN algorithm demonstrates higher accuracy, precision, stability, and more accurate data for predicting layer positions. By utilizing the XGBoost-GNN algorithm, this study proposes a classification-first, prediction-second methodology, which effectively captures the spatial and geological features of the strata by modeling the graph structure. This approach provides more accurate prediction results and supports drilling engineering design and safe and efficient drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
兆兆发布了新的文献求助10
刚刚
1秒前
erik完成签到 ,获得积分10
2秒前
3秒前
学生信的大叔完成签到,获得积分10
4秒前
kyouu发布了新的文献求助10
4秒前
5秒前
不去明知山完成签到 ,获得积分10
6秒前
华仔应助高磊采纳,获得10
7秒前
8秒前
wyfre发布了新的文献求助10
11秒前
Rita应助sdwdw采纳,获得10
12秒前
小易完成签到 ,获得积分10
13秒前
糕糕完成签到 ,获得积分10
14秒前
14秒前
Swii完成签到,获得积分10
14秒前
就看最后一篇完成签到 ,获得积分10
15秒前
小张吃不胖完成签到 ,获得积分10
15秒前
一彤展翅发布了新的文献求助10
15秒前
昵称完成签到,获得积分10
16秒前
边缘人关注了科研通微信公众号
19秒前
怕黑鲂完成签到 ,获得积分10
19秒前
19秒前
教生物的杨教授完成签到,获得积分10
20秒前
孙文霞发布了新的文献求助10
25秒前
27秒前
小薛完成签到,获得积分10
27秒前
AnJaShua完成签到 ,获得积分10
31秒前
uupp完成签到,获得积分10
35秒前
鲁卓林完成签到,获得积分10
36秒前
晁子枫完成签到 ,获得积分10
39秒前
lht完成签到 ,获得积分10
39秒前
郝富完成签到,获得积分10
41秒前
高高雅青发布了新的文献求助10
42秒前
43秒前
雾气海蓝完成签到 ,获得积分10
44秒前
好运常在完成签到 ,获得积分10
44秒前
单纯的石头完成签到 ,获得积分10
45秒前
45秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209672
求助须知:如何正确求助?哪些是违规求助? 4386826
关于积分的说明 13661758
捐赠科研通 4246171
什么是DOI,文献DOI怎么找? 2329675
邀请新用户注册赠送积分活动 1327422
关于科研通互助平台的介绍 1279784