Three-Pressure Prediction Method for Formation Based on Xgboost-gnn Hybrid Model

计算机科学 人工智能
作者
Lu Zou,Ming Tang,Shiming He,Hanchang Wang,Xinyu Guo
标识
DOI:10.2118/219095-ms
摘要

Abstract Accurate prediction of Three-Pressure data in geological formations can assist in determining drilling fluid design, wellbore stability assessment, and optimization of drilling parameters, thereby reducing the probability of drilling risks. Conventional methods for predicting triplet pressure in geological formations often involve complex calculations, numerous empirical parameters, low prediction accuracy, limited universality, and a certain degree of lag. Therefore, there is an urgent need for new methods that are efficient, simple, and accurate in predicting triplet pressure in geological formations. To address the aforementioned issues, this study focuses on the Penglai gas area in the Sichuan Basin. By employing the XGBoost algorithm, three well logging parameters, namely acoustic time difference, compensating density, and natural gamma, are selected to classify the strata into two types: clastic rocks and carbonate rocks. Additionally, using 11 well logging and drilling parameters, including well depth, acoustic time difference, compensating density, natural gamma, drilling time, drilling pressure, and torque, a graph neural network (GNN) is applied to capture the spatial geological features of the strata. Separate GNN prediction models are established for both clastic rocks and carbonate rocks, and the predicted results are compared and validated against field-measured data. The results indicate that the XGBoost algorithm achieves a classification accuracy of 94.31% and an AUC of 0.99. The GNN prediction models exhibit good accuracy and stability. When compared with the field-measured data, the clastic rock model shows an average MAPE of 3.963% and an average R2 value of 0.869 for the testing set, while the carbonate rock model shows an average MAPE of 1.681% and an average R2 value of 0.885 for the testing set. Compared with conventional rock mechanics three-layer pressure prediction methods such as the Eaton method, the XGBoost-GNN algorithm demonstrates higher accuracy, precision, stability, and more accurate data for predicting layer positions. By utilizing the XGBoost-GNN algorithm, this study proposes a classification-first, prediction-second methodology, which effectively captures the spatial and geological features of the strata by modeling the graph structure. This approach provides more accurate prediction results and supports drilling engineering design and safe and efficient drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王紫发布了新的文献求助10
1秒前
Anna完成签到,获得积分10
2秒前
勤奋翠霜发布了新的文献求助10
3秒前
包子发布了新的文献求助10
3秒前
3秒前
3秒前
Orange应助读心理学导致的采纳,获得10
4秒前
活力的海安完成签到,获得积分10
5秒前
6秒前
乐乐应助杜杜采纳,获得10
7秒前
韩林岑完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助满眼星辰采纳,获得10
11秒前
学渣一枚发布了新的文献求助10
11秒前
wy.he应助Anna采纳,获得10
11秒前
12秒前
13秒前
淡淡远锋发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
星月夜完成签到,获得积分10
15秒前
汤易文完成签到,获得积分10
16秒前
薇薇快跑发布了新的文献求助10
16秒前
amo完成签到,获得积分10
16秒前
清爽熊猫发布了新的文献求助30
17秒前
潸潸发布了新的文献求助10
20秒前
XT666完成签到,获得积分10
20秒前
pluto应助美茬子采纳,获得30
20秒前
20秒前
寄语明月完成签到,获得积分10
20秒前
21秒前
21秒前
银银完成签到,获得积分20
21秒前
科研通AI2S应助wang采纳,获得10
22秒前
皮崇知发布了新的文献求助10
22秒前
Candy完成签到,获得积分10
22秒前
ei123应助CJY采纳,获得30
23秒前
lpp_发布了新的文献求助10
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420