Three-Pressure Prediction Method for Formation Based on Xgboost-gnn Hybrid Model

计算机科学 人工智能
作者
Lu Zou,Ming Tang,Shiming He,Hanchang Wang,Xinyu Guo
标识
DOI:10.2118/219095-ms
摘要

Abstract Accurate prediction of Three-Pressure data in geological formations can assist in determining drilling fluid design, wellbore stability assessment, and optimization of drilling parameters, thereby reducing the probability of drilling risks. Conventional methods for predicting triplet pressure in geological formations often involve complex calculations, numerous empirical parameters, low prediction accuracy, limited universality, and a certain degree of lag. Therefore, there is an urgent need for new methods that are efficient, simple, and accurate in predicting triplet pressure in geological formations. To address the aforementioned issues, this study focuses on the Penglai gas area in the Sichuan Basin. By employing the XGBoost algorithm, three well logging parameters, namely acoustic time difference, compensating density, and natural gamma, are selected to classify the strata into two types: clastic rocks and carbonate rocks. Additionally, using 11 well logging and drilling parameters, including well depth, acoustic time difference, compensating density, natural gamma, drilling time, drilling pressure, and torque, a graph neural network (GNN) is applied to capture the spatial geological features of the strata. Separate GNN prediction models are established for both clastic rocks and carbonate rocks, and the predicted results are compared and validated against field-measured data. The results indicate that the XGBoost algorithm achieves a classification accuracy of 94.31% and an AUC of 0.99. The GNN prediction models exhibit good accuracy and stability. When compared with the field-measured data, the clastic rock model shows an average MAPE of 3.963% and an average R2 value of 0.869 for the testing set, while the carbonate rock model shows an average MAPE of 1.681% and an average R2 value of 0.885 for the testing set. Compared with conventional rock mechanics three-layer pressure prediction methods such as the Eaton method, the XGBoost-GNN algorithm demonstrates higher accuracy, precision, stability, and more accurate data for predicting layer positions. By utilizing the XGBoost-GNN algorithm, this study proposes a classification-first, prediction-second methodology, which effectively captures the spatial and geological features of the strata by modeling the graph structure. This approach provides more accurate prediction results and supports drilling engineering design and safe and efficient drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐雅青发布了新的文献求助10
1秒前
zhf发布了新的文献求助10
1秒前
1秒前
3秒前
asdadadad发布了新的文献求助10
3秒前
陈晗予发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
NexusExplorer应助大方忆秋采纳,获得10
5秒前
ruby发布了新的文献求助10
6秒前
lm完成签到,获得积分10
7秒前
7秒前
zeng发布了新的文献求助10
8秒前
9秒前
Bonnienuit完成签到 ,获得积分10
9秒前
胡茶茶完成签到,获得积分10
10秒前
10秒前
10秒前
小小发布了新的文献求助10
10秒前
shenghaowen发布了新的文献求助10
11秒前
陈晗予完成签到,获得积分10
11秒前
chao发布了新的文献求助10
12秒前
可靠的卿完成签到,获得积分10
12秒前
13秒前
十七完成签到,获得积分20
13秒前
star完成签到,获得积分10
16秒前
16秒前
TFBOY发布了新的文献求助10
16秒前
薇拉发布了新的文献求助10
17秒前
Lucy关注了科研通微信公众号
17秒前
17秒前
星辰大海应助慧妞采纳,获得10
18秒前
19秒前
ddd完成签到,获得积分10
19秒前
nron完成签到,获得积分10
19秒前
快乐雅青完成签到,获得积分10
20秒前
21秒前
21秒前
demo发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123109
求助须知:如何正确求助?哪些是违规求助? 2773607
关于积分的说明 7718616
捐赠科研通 2429228
什么是DOI,文献DOI怎么找? 1290188
科研通“疑难数据库(出版商)”最低求助积分说明 621783
版权声明 600251