材料科学
石英晶体微天平
插层(化学)
电化学
离子
水溶液
自行车
电极
阳极
化学工程
无机化学
物理化学
有机化学
化学
吸附
考古
工程类
历史
作者
Manlin Chen,Xin He,Min Zhou,Jing Ning,Zidong Zhang,Shenglin Cao,Tianqi Wang,Kangli Wang,Kai Jiang
标识
DOI:10.1002/aenm.202400724
摘要
Abstract TiS 2 has received significant attention as a promising anode for “Rocking‐Chair”‐type aqueous Zn‐ion batteries due to the large interlayer spacing and low discharge plateau. However, the structural distortion caused by the embedding of divalent Zn 2+ as well as the undesirable hydrogen evolution reaction (HER) severely affects their cycling stability. Herein, a facet‐dependent mechanism is first deeply investigated to understand charge storage behaviors of TiS 2 via differential electrochemical mass spectrometry, in situ electrochemical quartz crystal microbalance, and in situ X‐ray diffraction characterizations. By regulating the exposed crystal facets of TiS 2 from (001) (TS (001)) to (011) (TS(011)), HER can be effectively inhibited, and the charge storage mechanism is transformed from Zn 2+ insertion/extraction dominating to H + insertion/extraction dominating, resulting in faster charge transfer kinetics and strong structure stability during long‐term cycling. Hence, TS(011) delivers a higher reversible capacity of 212.9 mAh g −1 at 0.1 A g −1 and a strong cycling stability of 74% capacity retention over 1000 cycles, much better than that of TS (001) with a reversible capacity of 164.7 mAh g −1 at 0.1 A g −1 , a capacity retention of 17% after 1000 cycles. These new findings can provide deep insight into the rational design of high‐performance intercalation‐type electrode materials for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI