电解质
碳酸丙烯酯
溶剂化
电化学
兴奋剂
离子
轨道能级差
材料科学
掺杂剂
电化学窗口
阴极
碳酸二甲酯
无机化学
化学工程
化学
离子电导率
甲醇
有机化学
电极
光电子学
物理化学
分子
工程类
作者
Mingsheng Qin,Ziqi Zeng,Fenfen Ma,Chenkai Gu,Xin Chen,Shijie Cheng,Jia Xie
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-05-07
卷期号:9 (6): 2536-2544
被引量:5
标识
DOI:10.1021/acsenergylett.4c00790
摘要
Operating a Ni-rich cathode beyond 4.3 V safely holds promise for boosting the energy density in lithium-ion batteries (LIBs). Methyl 2,2,2-trifluoroethyl carbonate (FEMC) shows oxidative stability and high safety but suffers from degraded LUMO energy levels once coordinated with Li+ within electrolytes. Here, we utilize propylene carbonate (PC) as a functional dopant, which deliberately tunes the FEMC-dominated solvation chemistry and improves LUMO energy levels by dipole–dipole interaction and microsolvating competition. As a result, the optimized electrolyte demonstrates an expanded electrochemical window (4.7 V for NCM811), fire resistance, and a wide liquid range (−60–120 °C), affording 75.6% capacity retention in 1.2 Ah NCM811/graphite pouch cells over 1200 cycles. This "doping strategy" is generalized to other electrolytes (e.g., carbonates, fluorinated esters, and carboxylic esters) and qualifies as ameliorated interfacial compatibility, providing insights for designing a high-safety electrolyte in high-energy LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI