Generative Adversarial Networks Bridging Art and Machine Intelligence

桥接(联网) 对抗制 生成语法 计算机科学 人工智能 生成对抗网络 机器学习 深度学习 计算机安全
作者
Junhao Song,Yichao Zhang,Zhuming Bi,Tianyang Wang,Keyu Chen,Ming Li,Qian Niu,Junyu Liu,Benji Peng,Sen Zhang,Ming Liu,Jiawei Xu,Xiaoyong Pan,Jinlang Wang,Peiyong Feng,Yizhu Wen,Lingzhi Yan,H. Eric Tseng,Xinyuan Song,Jin‐Tao Ren,Silin Chen,Yunze Wang,Wilson C. Hsieh,Bowen Jing,Junjie Yang,Jun Zhou,Z P Yao,Chia Xin Liang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04116
摘要

This book begins with a detailed introduction to the fundamental principles and historical development of GANs, contrasting them with traditional generative models and elucidating the core adversarial mechanisms through illustrative Python examples. The text systematically addresses the mathematical and theoretical underpinnings including probability theory, statistics, and game theory providing a solid framework for understanding the objectives, loss functions, and optimisation challenges inherent to GAN training. Subsequent chapters review classic variants such as Conditional GANs, DCGANs, InfoGAN, and LAPGAN before progressing to advanced training methodologies like Wasserstein GANs, GANs with gradient penalty, least squares GANs, and spectral normalisation techniques. The book further examines architectural enhancements and task-specific adaptations in generators and discriminators, showcasing practical implementations in high resolution image generation, artistic style transfer, video synthesis, text to image generation and other multimedia applications. The concluding sections offer insights into emerging research trends, including self-attention mechanisms, transformer-based generative models, and a comparative analysis with diffusion models, thus charting promising directions for future developments in both academic and applied settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助平常的秋蝶采纳,获得10
刚刚
orixero应助甜蜜绿蓉采纳,获得10
刚刚
zzzz完成签到,获得积分10
刚刚
zhangxin完成签到,获得积分10
1秒前
amwlsai完成签到,获得积分10
1秒前
1秒前
小蜜蜂完成签到,获得积分10
1秒前
李健的小迷弟应助duke采纳,获得10
1秒前
风中的丝袜完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
唠叨的傲薇完成签到 ,获得积分10
2秒前
杰Sir完成签到,获得积分10
2秒前
与可完成签到,获得积分10
2秒前
3秒前
Tina完成签到 ,获得积分10
3秒前
滴滴嘟完成签到,获得积分10
4秒前
小圆完成签到,获得积分10
5秒前
May应助科研通管家采纳,获得20
5秒前
1101592875应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
tramp应助科研通管家采纳,获得30
5秒前
田様应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得30
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
风清扬应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
fan051500完成签到,获得积分10
7秒前
苹果骑士完成签到,获得积分10
8秒前
QJL完成签到,获得积分10
8秒前
似水年华关注了科研通微信公众号
9秒前
9秒前
疯狂的绮山完成签到,获得积分10
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478