Quantification of workload and characterisation of key performance factors in elite adolescent female volleyball players using machine learning

工作量 跳跃 跳跃的 绩效指标 计算机科学 统计 精英 机器学习 绩效改进 数学 模拟 运营管理 工程类 医学 政治 操作系统 政治学 物理 量子力学 经济 管理 法学 生理学
作者
Théo Bouzigues,Robin Candau,Sami Äyrämö,Olivier Maurelli,Jacques Prioux
出处
期刊:International Journal of Performance Analysis in Sport [Informa]
卷期号:: 1-17
标识
DOI:10.1080/24748668.2024.2430100
摘要

This study investigates key performance indicators (KPIs) influencing physical jumping performance in elite-level female volleyball players. This study aims to investigate three hypotheses: (1) the quantification of training load with "Stress Training Response" score is better in explaining and predicting jump performance than classic quantification methods such as mean or sum, (2) high intense exercises stand as primary variables explaining jump performance, and (3) non-linear models are better than linear models to explain and predict jump performance. Nineteen elite-level female volleyball players were monitored over a 190-day season. Various training-related parameters, including workload (external and internal) quantification, player positions, and menstrual cycle data, were collected. Machine learning techniques were employed to analyse and predict jump performance based on these variables. The Random Forest model outperformed other models in describing jump performance (R-squared = 0.64). Key performance indicators identified included workload dynamics, age, and the percentage of intense jumps made during the season. Prediction on a new dataset demonstrated promising results (Mean Absolute Error (MAE) = 4.95 cm (Confidence Interval (CI) 4.56 cm and 5.42 cm), R-squared = 0.55 (CI 0.45 and 0.62)). Findings suggest that intense training prior to performance enhances jump performance, with older players exhibiting superior jumping performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_Zl1Da8发布了新的文献求助10
1秒前
大脚丫发布了新的文献求助10
1秒前
刘放完成签到,获得积分10
3秒前
3秒前
hnwang98发布了新的文献求助10
3秒前
科研通AI2S应助ioei采纳,获得10
3秒前
LI电池发布了新的文献求助10
3秒前
sunflower完成签到 ,获得积分10
3秒前
4秒前
愤怒的鲨鱼完成签到,获得积分10
4秒前
十四发布了新的文献求助10
4秒前
tcf应助wu采纳,获得30
4秒前
Riggle G完成签到,获得积分10
4秒前
5秒前
闭眼玩手机完成签到,获得积分10
5秒前
十七发布了新的文献求助30
5秒前
memedaaaah发布了新的文献求助10
5秒前
Liu完成签到,获得积分10
5秒前
香蕉觅云应助刘润欣采纳,获得10
6秒前
xinzhongchen1完成签到,获得积分10
6秒前
CodeCraft应助weixiaosi采纳,获得10
6秒前
阿发发布了新的文献求助10
6秒前
刘放发布了新的文献求助10
7秒前
ASHUN完成签到 ,获得积分10
7秒前
大模型应助zxcvbnm采纳,获得10
7秒前
传奇3应助zxcvbnm采纳,获得10
8秒前
Spencer完成签到,获得积分10
8秒前
NN应助luogan采纳,获得10
8秒前
可爱的函函应助Zoe采纳,获得10
8秒前
cai发布了新的文献求助10
8秒前
hhh完成签到 ,获得积分10
8秒前
zhui发布了新的文献求助10
9秒前
zzzzzz发布了新的文献求助10
9秒前
nanami发布了新的文献求助10
9秒前
微笑的语芙完成签到,获得积分10
10秒前
10秒前
共享精神应助梦梦采纳,获得10
10秒前
雲樂完成签到 ,获得积分10
10秒前
zw完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176194
求助须知:如何正确求助?哪些是违规求助? 4365180
关于积分的说明 13590723
捐赠科研通 4214765
什么是DOI,文献DOI怎么找? 2311684
邀请新用户注册赠送积分活动 1310608
关于科研通互助平台的介绍 1258637