Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method

卷积神经网络 方位(导航) 变压器 计算机科学 人工智能 断层(地质) 模式识别(心理学) 地质学 工程类 电气工程 地震学 电压
作者
Wang Deng-Long,Yonghua Li,Chong Lu,Zhihui Men,Xing Zhao
标识
DOI:10.1177/09544054241290573
摘要

The existing data-driven fault diagnosis methods face some significant problems in practical applications. Many traditional methods rely on a large number of high-quality labeled data for training, but in the industrial environment, the actual fault data obtained is often limited and unbalanced. This data scarcity seriously limits the diagnostic ability of the model and is prone to insufficient diagnostic accuracy. In addition, the data-driven method has a strong dependence on data, and it is prone to misjudgment in the face of complex environments such as noise interference and equipment state changes. These problems jointly restrict the application effect of fault diagnosis methods in industrial actual scenarios. Based on this, this paper proposes a new method of rolling bearing fault diagnosis based on digital twin technology and improved convolutional neural network (CNN)-Transformer deep learning model. Firstly, the geometric characteristics and motion mechanism of rolling bearings are analyzed in depth, and a high-fidelity virtual twin model is established. A balanced simulation data set is generated by numerical simulation. Secondly, we improve the traditional CNN, combined with the Transformer deep learning framework, to enhance the ability of the network to extract features. By performing wavelet transform on the test data obtained from the rolling bearing acceleration test bench and the simulation data generated by the twin model, a dual-channel signal of parallel convolution is formed, and a fault diagnosis model based on dual-channel parallel CNN-Transformer is constructed. Finally, the effectiveness of the proposed method is verified by ablation experiments. The results show that the proposed method can accurately and efficiently identify different rolling bearing fault modes and has superior diagnostic performance. At the same time, the model can also be further extended to related fields to provide new ideas and technical references for fault diagnosis of other mechanical equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助黑大侠采纳,获得30
1秒前
1秒前
shine发布了新的文献求助10
2秒前
周洋完成签到,获得积分10
2秒前
吴彦祖发布了新的文献求助10
4秒前
6秒前
打打应助十八采纳,获得10
7秒前
大意的羊完成签到,获得积分10
8秒前
demoestar完成签到 ,获得积分10
9秒前
9秒前
zwy发布了新的文献求助10
10秒前
11秒前
12秒前
shine完成签到,获得积分10
13秒前
耶zyf发布了新的文献求助10
15秒前
8R60d8应助852采纳,获得10
15秒前
Spine Lin发布了新的文献求助10
15秒前
黑大侠发布了新的文献求助30
16秒前
16秒前
香蕉觅云应助拓跋雨梅采纳,获得10
18秒前
18秒前
赵焱峥完成签到,获得积分10
21秒前
21秒前
传奇3应助发生了什么树采纳,获得10
21秒前
xun发布了新的文献求助10
22秒前
小草完成签到 ,获得积分10
22秒前
22秒前
24秒前
25秒前
平淡思雁完成签到,获得积分10
26秒前
圆圆完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
29秒前
bkagyin应助xun采纳,获得10
30秒前
32秒前
Jalynn2044发布了新的文献求助10
32秒前
33秒前
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240