Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method

卷积神经网络 方位(导航) 变压器 计算机科学 人工智能 断层(地质) 模式识别(心理学) 地质学 工程类 电气工程 地震学 电压
作者
Wang Deng-Long,Yonghua Li,Chong Lu,Zhihui Men,Xing Zhao
标识
DOI:10.1177/09544054241290573
摘要

The existing data-driven fault diagnosis methods face some significant problems in practical applications. Many traditional methods rely on a large number of high-quality labeled data for training, but in the industrial environment, the actual fault data obtained is often limited and unbalanced. This data scarcity seriously limits the diagnostic ability of the model and is prone to insufficient diagnostic accuracy. In addition, the data-driven method has a strong dependence on data, and it is prone to misjudgment in the face of complex environments such as noise interference and equipment state changes. These problems jointly restrict the application effect of fault diagnosis methods in industrial actual scenarios. Based on this, this paper proposes a new method of rolling bearing fault diagnosis based on digital twin technology and improved convolutional neural network (CNN)-Transformer deep learning model. Firstly, the geometric characteristics and motion mechanism of rolling bearings are analyzed in depth, and a high-fidelity virtual twin model is established. A balanced simulation data set is generated by numerical simulation. Secondly, we improve the traditional CNN, combined with the Transformer deep learning framework, to enhance the ability of the network to extract features. By performing wavelet transform on the test data obtained from the rolling bearing acceleration test bench and the simulation data generated by the twin model, a dual-channel signal of parallel convolution is formed, and a fault diagnosis model based on dual-channel parallel CNN-Transformer is constructed. Finally, the effectiveness of the proposed method is verified by ablation experiments. The results show that the proposed method can accurately and efficiently identify different rolling bearing fault modes and has superior diagnostic performance. At the same time, the model can also be further extended to related fields to provide new ideas and technical references for fault diagnosis of other mechanical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingding发布了新的文献求助10
1秒前
1秒前
1秒前
充电宝应助ZHANGXUEJUN采纳,获得100
2秒前
黄科研应助风花雪月采纳,获得10
2秒前
2秒前
Tuesday发布了新的文献求助10
2秒前
2秒前
英姑应助惊蛰时分听春雷采纳,获得10
2秒前
木易心完成签到,获得积分10
3秒前
猪猪hero发布了新的文献求助10
4秒前
Solarenergy完成签到,获得积分0
4秒前
泡沫发布了新的文献求助20
5秒前
陈成完成签到,获得积分10
5秒前
shunli完成签到,获得积分10
5秒前
简单的沛蓝完成签到 ,获得积分10
5秒前
163完成签到 ,获得积分10
5秒前
Lucy小影完成签到,获得积分10
5秒前
雪白的凡灵完成签到,获得积分10
5秒前
Emma发布了新的文献求助10
5秒前
Ayu发布了新的文献求助10
5秒前
www发布了新的文献求助10
6秒前
Amostre88完成签到,获得积分10
6秒前
余凉发布了新的文献求助10
6秒前
HEANZ发布了新的文献求助10
6秒前
华仔应助情殇采纳,获得10
6秒前
淡定依玉发布了新的文献求助30
6秒前
yan完成签到,获得积分10
6秒前
faye完成签到,获得积分10
7秒前
7秒前
RMY完成签到 ,获得积分10
8秒前
8秒前
zzzz12完成签到,获得积分10
9秒前
9秒前
秋澄完成签到 ,获得积分10
9秒前
9秒前
9秒前
Lucky完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942