Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method

卷积神经网络 方位(导航) 变压器 计算机科学 人工智能 断层(地质) 模式识别(心理学) 地质学 工程类 电气工程 地震学 电压
作者
Wang Deng-Long,Yonghua Li,Chong Lu,Zhihui Men,Xing Zhao
标识
DOI:10.1177/09544054241290573
摘要

The existing data-driven fault diagnosis methods face some significant problems in practical applications. Many traditional methods rely on a large number of high-quality labeled data for training, but in the industrial environment, the actual fault data obtained is often limited and unbalanced. This data scarcity seriously limits the diagnostic ability of the model and is prone to insufficient diagnostic accuracy. In addition, the data-driven method has a strong dependence on data, and it is prone to misjudgment in the face of complex environments such as noise interference and equipment state changes. These problems jointly restrict the application effect of fault diagnosis methods in industrial actual scenarios. Based on this, this paper proposes a new method of rolling bearing fault diagnosis based on digital twin technology and improved convolutional neural network (CNN)-Transformer deep learning model. Firstly, the geometric characteristics and motion mechanism of rolling bearings are analyzed in depth, and a high-fidelity virtual twin model is established. A balanced simulation data set is generated by numerical simulation. Secondly, we improve the traditional CNN, combined with the Transformer deep learning framework, to enhance the ability of the network to extract features. By performing wavelet transform on the test data obtained from the rolling bearing acceleration test bench and the simulation data generated by the twin model, a dual-channel signal of parallel convolution is formed, and a fault diagnosis model based on dual-channel parallel CNN-Transformer is constructed. Finally, the effectiveness of the proposed method is verified by ablation experiments. The results show that the proposed method can accurately and efficiently identify different rolling bearing fault modes and has superior diagnostic performance. At the same time, the model can also be further extended to related fields to provide new ideas and technical references for fault diagnosis of other mechanical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eleusis完成签到,获得积分10
1秒前
RSC完成签到,获得积分10
1秒前
天天快乐应助daqiao采纳,获得10
1秒前
1秒前
2秒前
david发布了新的文献求助10
2秒前
标致的从雪完成签到,获得积分10
3秒前
yoyofun应助婷妞儿采纳,获得10
3秒前
彩色的若颜完成签到,获得积分10
4秒前
DQY发布了新的文献求助10
4秒前
小白白白完成签到 ,获得积分10
4秒前
风趣的觅山完成签到,获得积分10
4秒前
zzz完成签到 ,获得积分10
5秒前
ylh发布了新的文献求助10
5秒前
大个应助细心雁荷采纳,获得30
5秒前
莎莎完成签到 ,获得积分10
5秒前
5秒前
5秒前
科研通AI5应助标致的方盒采纳,获得10
6秒前
LeichterL发布了新的文献求助10
7秒前
7秒前
7秒前
香蕉觅云应助怡然雁凡采纳,获得10
7秒前
8秒前
8秒前
摆烂昊完成签到,获得积分10
8秒前
Tetrahydron发布了新的文献求助10
8秒前
wanci应助cricket采纳,获得10
8秒前
葡萄狗发布了新的文献求助10
8秒前
猪仔5号发布了新的文献求助10
9秒前
田心雨完成签到 ,获得积分10
9秒前
ding应助卡图兰采纳,获得10
9秒前
镜小小静完成签到,获得积分10
9秒前
英姑应助X_L_iang采纳,获得10
10秒前
10秒前
传奇3应助乌兰巴托没有海采纳,获得10
10秒前
上官若男应助扎根采纳,获得10
10秒前
华仔应助ZXC采纳,获得10
10秒前
默默地读文献应助分子筛采纳,获得20
10秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731797
求助须知:如何正确求助?哪些是违规求助? 3276146
关于积分的说明 9995379
捐赠科研通 2991596
什么是DOI,文献DOI怎么找? 1641646
邀请新用户注册赠送积分活动 779941
科研通“疑难数据库(出版商)”最低求助积分说明 748579