Research on digital twin-assisted dual-channel parallel convolutional neural network-transformer rolling bearing fault diagnosis method

卷积神经网络 方位(导航) 变压器 计算机科学 人工智能 断层(地质) 模式识别(心理学) 地质学 工程类 电气工程 地震学 电压
作者
Wang Deng-Long,Yonghua Li,Chong Lu,Zhihui Men,Xing Zhao
标识
DOI:10.1177/09544054241290573
摘要

The existing data-driven fault diagnosis methods face some significant problems in practical applications. Many traditional methods rely on a large number of high-quality labeled data for training, but in the industrial environment, the actual fault data obtained is often limited and unbalanced. This data scarcity seriously limits the diagnostic ability of the model and is prone to insufficient diagnostic accuracy. In addition, the data-driven method has a strong dependence on data, and it is prone to misjudgment in the face of complex environments such as noise interference and equipment state changes. These problems jointly restrict the application effect of fault diagnosis methods in industrial actual scenarios. Based on this, this paper proposes a new method of rolling bearing fault diagnosis based on digital twin technology and improved convolutional neural network (CNN)-Transformer deep learning model. Firstly, the geometric characteristics and motion mechanism of rolling bearings are analyzed in depth, and a high-fidelity virtual twin model is established. A balanced simulation data set is generated by numerical simulation. Secondly, we improve the traditional CNN, combined with the Transformer deep learning framework, to enhance the ability of the network to extract features. By performing wavelet transform on the test data obtained from the rolling bearing acceleration test bench and the simulation data generated by the twin model, a dual-channel signal of parallel convolution is formed, and a fault diagnosis model based on dual-channel parallel CNN-Transformer is constructed. Finally, the effectiveness of the proposed method is verified by ablation experiments. The results show that the proposed method can accurately and efficiently identify different rolling bearing fault modes and has superior diagnostic performance. At the same time, the model can also be further extended to related fields to provide new ideas and technical references for fault diagnosis of other mechanical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王博文发布了新的文献求助10
刚刚
jlm完成签到,获得积分10
刚刚
刚刚
sylvia发布了新的文献求助40
1秒前
朴素的雪瑶完成签到 ,获得积分10
1秒前
暗能量完成签到,获得积分10
1秒前
2秒前
归尘发布了新的文献求助10
2秒前
王梦秋发布了新的文献求助10
2秒前
4秒前
popvich应助玉雪晴儿采纳,获得20
4秒前
LR发布了新的文献求助10
5秒前
XXGG发布了新的文献求助20
5秒前
落花怨蝶完成签到,获得积分10
6秒前
unqiue应助小小旭呀采纳,获得10
6秒前
Morch2021发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助punker采纳,获得10
8秒前
10秒前
酷波er应助冷静的弼采纳,获得10
10秒前
sanshi100完成签到,获得积分10
11秒前
甫寸发布了新的文献求助10
11秒前
11秒前
何苗子发布了新的文献求助10
11秒前
王阳洋完成签到,获得积分10
12秒前
Akim应助蓝hj561213采纳,获得10
13秒前
Alxe完成签到,获得积分10
14秒前
Azzfy完成签到,获得积分10
14秒前
阿龙完成签到,获得积分10
14秒前
15秒前
洛羽七完成签到 ,获得积分10
15秒前
ZM发布了新的文献求助10
15秒前
追寻澜完成签到 ,获得积分10
18秒前
喜悦的开山完成签到 ,获得积分10
19秒前
导儿早日秃头完成签到,获得积分10
19秒前
19秒前
小樱颖子完成签到 ,获得积分10
20秒前
留影发布了新的文献求助10
21秒前
21秒前
zyc1111111完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991103
求助须知:如何正确求助?哪些是违规求助? 4239754
关于积分的说明 13208013
捐赠科研通 4034494
什么是DOI,文献DOI怎么找? 2207347
邀请新用户注册赠送积分活动 1218369
关于科研通互助平台的介绍 1136729