石墨
中子衍射
材料科学
电极
中子成像
衍射
相(物质)
中子
光学
冶金
核物理学
化学
物理
物理化学
有机化学
作者
Markus Ströbl,M. Baur,Stavros Samothraktis,Florencia Malamud,Shouxin Zhang,Patrick Kin Man Tung,S. Schmidt,Robin Woracek,Jongmin Lee,Ryoji Kiyanagi,Luise Theil Kuhn,Inbal Gavish Segev,Yair Ein‐Eli
出处
期刊:Cornell University - arXiv
日期:2024-11-13
标识
DOI:10.48550/arxiv.2411.08476
摘要
Energy efficient, safe and reliable Li-ion batteries (LIBs) are required for a wide range of applications. Charging capabilities of thick electrodes still holding their stored high-energy is a most desirable characteristic in future advanced LIBs. The introduction of ultra-thick graphite anode meets limitations in internal electrode transport properties, leading to Li-ion gradients with detrimental consequences for battery cell performance and lifetime. Yet, there is a lack of experimental tools capable of providing a complete view of local processes and evolving gradients within such thick electrodes. Here, we introduce a multi-modal operando measurement approach, enabling quantitative spatio-temporal observations of Li concentrations and intercalation phases in ultra-thick, graphite electrodes. Neutron imaging and diffraction concurrently provide correlated information from the macroscopic scale of the cell and electrode down to the crystallographic scale portraying the intercalation and deintercalation processes. In particular, the evolving formation of the solid electrolyte interphase (SEI), observation of gradients in total lithium content, as well as in the formation of ordered LixC6 phases and trapped lithium have been mapped throughout the first charge-discharge cycle of the cell. Different lithiation stages co-exist during charging and discharging of an ultra-thick composite graphite-based electrode; delayed lithiation and delithiation processes are observed at the central region of the electrode, while the SEI formation, potential plating and dead lithium are predominantly found closer to the interface with the separator. The study furthermore emphasizes the potential of the method to study Li ion diffusion and the kinetics of lithiation phase formation in advanced ultra-thick electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI