Gel Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Salt-Concentrated Electrolytes for High-Voltage Lithium Metal Batteries

六氟丙烯 电解质 聚合物电解质 锂(药物) 金属锂 材料科学 盐(化学) 聚合物 无机化学 离子电导率 化学 电极 复合材料 共聚物 有机化学 医学 物理化学 四氟乙烯 内分泌学
作者
Yuta Maeyoshi,Kazuki Yoshii,Hikaru Sano,Hikarí Sakaebe,Ryota Tamate,Tomoaki Kaneko,Keitaro Sodeyama
出处
期刊:ACS applied polymer materials [American Chemical Society]
标识
DOI:10.1021/acsapm.4c03396
摘要

Although high-voltage lithium (Li) metal batteries are promising next-generation energy storage devices, their practical use is hindered by their poor cycling stability owing to low electrolyte compatibility with both Li metal anodes and 5 V-class cathodes. In this study, we report that the gelation of salt-concentrated electrolytes with weakly coordinating poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) effectively improves the cycling stability of high-voltage Li metal batteries. The PVDF-HFP-based gel polymer electrolyte with a salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)amide (LiFSA) and sulfolane (SL) achieves a high Coulombic efficiency and dense deposition morphology of Li metal anodes, along with sufficient oxidation stability against 5 V-class cathodes. Experimental and computational analyses show that the solvation structures of SL–Li+–FSA–, similar to those in the original concentrated electrolyte, are maintained in the PVDF-HFP matrix, which leads to the formation of a low-resistance solid electrolyte interphase (SEI) rich in lithium fluoride and sulfur compounds. These findings indicate that the low-resistance SEI in the gel polymer electrolyte promotes dense Li deposits, which suppresses electrolyte decomposition and inactive Li formation, improving the Coulombic efficiency of Li metal anodes. We demonstrate that the stable cycling of a Li metal battery with a 5 V-class LiNi0.5Mn1.5O4 cathode is enabled by the gel electrolyte, which inhibits the deposition of transition metals dissolved from the cathode onto the anode. This electrolyte and interface design is an effective strategy for developing 5 V-class Li metal batteries and can be applied to other high-energy-density metal batteries with high-voltage cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉发布了新的文献求助10
1秒前
Zoe发布了新的文献求助10
1秒前
Hover完成签到,获得积分10
1秒前
自然的茉莉完成签到,获得积分10
2秒前
2秒前
Mandy完成签到,获得积分10
2秒前
3秒前
脑洞疼应助qaq采纳,获得10
3秒前
世界尽头发布了新的文献求助10
3秒前
小二郎应助科研民工采纳,获得10
3秒前
4秒前
无奈满天发布了新的文献求助10
4秒前
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
贪玩丸子完成签到,获得积分10
5秒前
神勇的雅香应助liutaili采纳,获得10
6秒前
KSGGS完成签到,获得积分10
6秒前
YANG关注了科研通微信公众号
6秒前
7秒前
7秒前
7秒前
99发布了新的文献求助10
8秒前
8秒前
科研通AI5应助qi采纳,获得10
8秒前
乐乐发布了新的文献求助10
9秒前
铸一字错发布了新的文献求助10
9秒前
受伤书文完成签到,获得积分10
10秒前
Yvonne发布了新的文献求助10
10秒前
10秒前
温柔的十三完成签到,获得积分10
10秒前
Ll发布了新的文献求助10
11秒前
nikai发布了新的文献求助10
11秒前
圣晟胜发布了新的文献求助10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
Leif应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759