Three-dimensional semi-supervised lumbar vertebrae region of interest segmentation based on MAE pre-training

Sørensen–骰子系数 分割 人工智能 豪斯多夫距离 计算机科学 感兴趣区域 模式识别(心理学) 腰椎 遮罩(插图) 深度学习 计算机视觉 图像分割 腰椎 医学 放射科 艺术 视觉艺术
作者
Yang Liu,Jian Chen,Jinjin Hai,Kai Qiao,信一郎 岡崎,Yongli Li,Bin Yan
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996241301685
摘要

Background: The annotation of the regions of interest (ROI) of lumbar vertebrae by radiologists for bone density assessment is a tedious and time-intensive task. However, deep learning (DL) methods for image segmentation has the potential to substitute manual annotations which can significantly improve the efficiency of clinical diagnostics. Objective: The paper proposes a semi-supervised three-dimensional (3D) segmentation method for the ROI of lumbar vertebrae by integrating the tube masking masked autoencoder (MAE) pre-training. Methods: The paper proposes a method that modifies the masking strategy of the original MAE pre-training network. And the pre-training network is only trained by images without segmentation labels, when the training is finished, the weights will be saved for segmentation tasks. In downstream tasks, a semi-supervised approach utilizing pseudo-label generation is employed for training. This method leverages a small amount of labeled data to achieve the segmentation of ROI of the lumbar vertebrae. Results: The experimental results demonstrate that under the condition of limited annotated data, the proposed network improves the dice coefficient by 5–7% and reduces the hausdorff distance by 0.2∼0.6 mm compared to using the UNetr network alone for segmentation. When compared to the conventional MAE, the tube masking MAE presented in this paper assists effectively in segmentation, resulting in a 2% increase in the dice coefficient and a 0.24 mm reduction in the hausdorff distance. Conclusion: Automatic segmentation of the ROI of the lumbar vertebrae helps to shorten the time for doctors to annotate vertebrae during clinical bone density examinations. The paper employs the tube masking MAE pre-trained model to effectively extract contextual information of the 3D lumbar vertebrae, combining it with a semi-supervised network leveraging pseudo-label generation for fine-tuning, which leads to effective 3D segmentation of the lumbar vertebrae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
windsea完成签到,获得积分0
刚刚
1秒前
HHHM发布了新的文献求助10
2秒前
2秒前
情怀应助十八采纳,获得10
2秒前
方班术完成签到,获得积分10
3秒前
3秒前
大睡神发布了新的文献求助10
4秒前
5秒前
5秒前
bbbui完成签到 ,获得积分10
5秒前
under发布了新的文献求助10
8秒前
方班术发布了新的文献求助10
8秒前
独特的思烟完成签到,获得积分10
10秒前
njuxyh发布了新的文献求助10
11秒前
共享精神应助Z2222采纳,获得10
11秒前
11秒前
范欣雨完成签到,获得积分10
13秒前
HHHM完成签到,获得积分10
13秒前
小羊咩咩关注了科研通微信公众号
15秒前
zhh发布了新的文献求助10
16秒前
小菅完成签到 ,获得积分10
16秒前
223完成签到,获得积分10
16秒前
rtaxa完成签到,获得积分0
16秒前
17秒前
19秒前
悟空发布了新的文献求助30
23秒前
a61发布了新的文献求助30
23秒前
23秒前
劲秉应助BurgerKing采纳,获得10
24秒前
顾矜应助zhh采纳,获得10
28秒前
朱超帆完成签到,获得积分10
28秒前
HJ完成签到,获得积分10
28秒前
默尧完成签到,获得积分10
29秒前
healthy完成签到 ,获得积分10
30秒前
30秒前
希望天下0贩的0应助zimo采纳,获得10
31秒前
Cool完成签到,获得积分10
31秒前
寂寞的菲鹰完成签到,获得积分10
32秒前
HJ关闭了HJ文献求助
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732692
求助须知:如何正确求助?哪些是违规求助? 3276827
关于积分的说明 9999066
捐赠科研通 2992492
什么是DOI,文献DOI怎么找? 1642273
邀请新用户注册赠送积分活动 780263
科研通“疑难数据库(出版商)”最低求助积分说明 748720