Delineating the effective use of self-supervised learning in single-cell genomics

计算机科学 人工智能 水准点(测量) 机器学习 学习迁移 特征学习 代表(政治) 深度学习 模态(人机交互) 遮罩(插图) 视觉艺术 艺术 政治 法学 地理 政治学 大地测量学
作者
Till Richter,Mojtaba Bahrami,Yufan Xia,David S. Fischer,Fabian J. Theis
出处
期刊:Nature Machine Intelligence [Springer Nature]
标识
DOI:10.1038/s42256-024-00934-3
摘要

Abstract Self-supervised learning (SSL) has emerged as a powerful method for extracting meaningful representations from vast, unlabelled datasets, transforming computer vision and natural language processing. In single-cell genomics (SCG), representation learning offers insights into the complex biological data, especially with emerging foundation models. However, identifying scenarios in SCG where SSL outperforms traditional learning methods remains a nuanced challenge. Furthermore, selecting the most effective pretext tasks within the SSL framework for SCG is a critical yet unresolved question. Here we address this gap by adapting and benchmarking SSL methods in SCG, including masked autoencoders with multiple masking strategies and contrastive learning methods. Models trained on over 20 million cells were examined across multiple downstream tasks, including cell-type prediction, gene-expression reconstruction, cross-modality prediction and data integration. Our empirical analyses underscore the nuanced role of SSL, namely, in transfer learning scenarios leveraging auxiliary data or analysing unseen datasets. Masked autoencoders excel over contrastive methods in SCG, diverging from computer vision trends. Moreover, our findings reveal the notable capabilities of SSL in zero-shot settings and its potential in cross-modality prediction and data integration. In summary, we study SSL methods in SCG on fully connected networks and benchmark their utility across key representation learning scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Yuciyy采纳,获得10
刚刚
1秒前
Owen应助健壮问兰采纳,获得10
2秒前
2秒前
3秒前
潇洒闭月发布了新的文献求助10
3秒前
4秒前
cslghe发布了新的文献求助10
4秒前
4秒前
希望天下0贩的0应助彬子采纳,获得10
4秒前
6秒前
别看了发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
6秒前
7秒前
嘻嘻发布了新的文献求助10
7秒前
8秒前
墨羽完成签到,获得积分10
8秒前
星辰大海应助猪猪hero采纳,获得10
8秒前
8秒前
ZZ发布了新的文献求助10
9秒前
aulinwl发布了新的文献求助30
9秒前
bkagyin应助lo采纳,获得10
10秒前
侧耳倾听发布了新的文献求助10
11秒前
易安发布了新的文献求助10
11秒前
xiao完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
爆米花应助哇哦呀采纳,获得10
12秒前
英俊的铭应助andrele采纳,获得50
12秒前
13秒前
李爱国应助XSWAN采纳,获得10
13秒前
zhaoa发布了新的文献求助10
13秒前
漾漾发布了新的文献求助10
13秒前
上官若男应助农艳宁采纳,获得10
13秒前
14秒前
lllliu发布了新的文献求助10
15秒前
15秒前
16秒前
乱码完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165