Delineating the effective use of self-supervised learning in single-cell genomics

计算机科学 人工智能 水准点(测量) 机器学习 学习迁移 特征学习 代表(政治) 深度学习 模态(人机交互) 遮罩(插图) 视觉艺术 艺术 政治 法学 地理 政治学 大地测量学
作者
Till Richter,Mojtaba Bahrami,Yufan Xia,David S. Fischer,Fabian J. Theis
出处
期刊:Nature Machine Intelligence [Springer Nature]
标识
DOI:10.1038/s42256-024-00934-3
摘要

Abstract Self-supervised learning (SSL) has emerged as a powerful method for extracting meaningful representations from vast, unlabelled datasets, transforming computer vision and natural language processing. In single-cell genomics (SCG), representation learning offers insights into the complex biological data, especially with emerging foundation models. However, identifying scenarios in SCG where SSL outperforms traditional learning methods remains a nuanced challenge. Furthermore, selecting the most effective pretext tasks within the SSL framework for SCG is a critical yet unresolved question. Here we address this gap by adapting and benchmarking SSL methods in SCG, including masked autoencoders with multiple masking strategies and contrastive learning methods. Models trained on over 20 million cells were examined across multiple downstream tasks, including cell-type prediction, gene-expression reconstruction, cross-modality prediction and data integration. Our empirical analyses underscore the nuanced role of SSL, namely, in transfer learning scenarios leveraging auxiliary data or analysing unseen datasets. Masked autoencoders excel over contrastive methods in SCG, diverging from computer vision trends. Moreover, our findings reveal the notable capabilities of SSL in zero-shot settings and its potential in cross-modality prediction and data integration. In summary, we study SSL methods in SCG on fully connected networks and benchmark their utility across key representation learning scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛大爷发布了新的文献求助10
1秒前
优雅的平安完成签到 ,获得积分10
4秒前
合适醉蝶完成签到 ,获得积分10
5秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
6秒前
科研通AI6应助葛大爷采纳,获得10
12秒前
李某某完成签到 ,获得积分10
13秒前
nicholas完成签到,获得积分10
19秒前
研友Bn完成签到 ,获得积分10
23秒前
dlzheng完成签到 ,获得积分10
23秒前
洸彦完成签到 ,获得积分10
25秒前
Karry完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
肥亮完成签到 ,获得积分20
28秒前
雷小牛完成签到 ,获得积分10
32秒前
狂跳的脉搏完成签到,获得积分10
32秒前
123567完成签到 ,获得积分10
35秒前
仗剑走天涯完成签到 ,获得积分10
37秒前
贪玩的秋柔应助予秋采纳,获得10
38秒前
贪玩的秋柔应助予秋采纳,获得10
38秒前
chichenglin完成签到 ,获得积分0
41秒前
mark33442完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
风趣朝雪完成签到,获得积分10
48秒前
英勇的红酒完成签到 ,获得积分10
50秒前
gxzsdf完成签到 ,获得积分10
51秒前
快乐谷蓝完成签到,获得积分10
52秒前
wBw完成签到,获得积分10
53秒前
iorpi完成签到,获得积分10
54秒前
kk完成签到,获得积分10
57秒前
caulif完成签到 ,获得积分10
57秒前
瞬间de回眸完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
dadaup完成签到 ,获得积分10
1分钟前
吉吉完成签到,获得积分10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
Edou完成签到 ,获得积分10
1分钟前
凡凡完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kingfly2010完成签到,获得积分10
1分钟前
善善完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584819
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615409
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575