Delineating the effective use of self-supervised learning in single-cell genomics

计算机科学 人工智能 水准点(测量) 机器学习 学习迁移 特征学习 代表(政治) 深度学习 模态(人机交互) 遮罩(插图) 视觉艺术 艺术 政治 法学 地理 政治学 大地测量学
作者
Till Richter,Mojtaba Bahrami,Yufan Xia,David S. Fischer,Fabian J. Theis
出处
期刊:Nature Machine Intelligence [Springer Nature]
标识
DOI:10.1038/s42256-024-00934-3
摘要

Abstract Self-supervised learning (SSL) has emerged as a powerful method for extracting meaningful representations from vast, unlabelled datasets, transforming computer vision and natural language processing. In single-cell genomics (SCG), representation learning offers insights into the complex biological data, especially with emerging foundation models. However, identifying scenarios in SCG where SSL outperforms traditional learning methods remains a nuanced challenge. Furthermore, selecting the most effective pretext tasks within the SSL framework for SCG is a critical yet unresolved question. Here we address this gap by adapting and benchmarking SSL methods in SCG, including masked autoencoders with multiple masking strategies and contrastive learning methods. Models trained on over 20 million cells were examined across multiple downstream tasks, including cell-type prediction, gene-expression reconstruction, cross-modality prediction and data integration. Our empirical analyses underscore the nuanced role of SSL, namely, in transfer learning scenarios leveraging auxiliary data or analysing unseen datasets. Masked autoencoders excel over contrastive methods in SCG, diverging from computer vision trends. Moreover, our findings reveal the notable capabilities of SSL in zero-shot settings and its potential in cross-modality prediction and data integration. In summary, we study SSL methods in SCG on fully connected networks and benchmark their utility across key representation learning scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助风华采纳,获得10
3秒前
xmhxpz完成签到,获得积分10
3秒前
5秒前
Youngen发布了新的文献求助10
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
online1881完成签到,获得积分10
9秒前
会飞的鱼完成签到,获得积分10
12秒前
小余同学完成签到 ,获得积分10
13秒前
吉涛发布了新的文献求助10
14秒前
田...完成签到,获得积分10
14秒前
阔达如柏完成签到,获得积分10
15秒前
wy完成签到,获得积分10
16秒前
Ammon完成签到,获得积分10
17秒前
明理小凝完成签到 ,获得积分10
17秒前
大苗完成签到,获得积分10
19秒前
曾经的凌青完成签到 ,获得积分10
20秒前
21秒前
体贴的手链完成签到,获得积分10
21秒前
21秒前
Youngen完成签到,获得积分10
22秒前
小樊爱摸鱼完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
23秒前
24秒前
24秒前
24秒前
wy应助科研通管家采纳,获得10
24秒前
wy应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
思源应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081