Delineating the effective use of self-supervised learning in single-cell genomics

计算机科学 人工智能 水准点(测量) 机器学习 学习迁移 特征学习 代表(政治) 深度学习 模态(人机交互) 遮罩(插图) 艺术 大地测量学 政治 政治学 法学 视觉艺术 地理
作者
Till Richter,Mojtaba Bahrami,Yufan Xia,David S. Fischer,Fabian J. Theis
出处
期刊:Nature Machine Intelligence [Springer Nature]
标识
DOI:10.1038/s42256-024-00934-3
摘要

Abstract Self-supervised learning (SSL) has emerged as a powerful method for extracting meaningful representations from vast, unlabelled datasets, transforming computer vision and natural language processing. In single-cell genomics (SCG), representation learning offers insights into the complex biological data, especially with emerging foundation models. However, identifying scenarios in SCG where SSL outperforms traditional learning methods remains a nuanced challenge. Furthermore, selecting the most effective pretext tasks within the SSL framework for SCG is a critical yet unresolved question. Here we address this gap by adapting and benchmarking SSL methods in SCG, including masked autoencoders with multiple masking strategies and contrastive learning methods. Models trained on over 20 million cells were examined across multiple downstream tasks, including cell-type prediction, gene-expression reconstruction, cross-modality prediction and data integration. Our empirical analyses underscore the nuanced role of SSL, namely, in transfer learning scenarios leveraging auxiliary data or analysing unseen datasets. Masked autoencoders excel over contrastive methods in SCG, diverging from computer vision trends. Moreover, our findings reveal the notable capabilities of SSL in zero-shot settings and its potential in cross-modality prediction and data integration. In summary, we study SSL methods in SCG on fully connected networks and benchmark their utility across key representation learning scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Hello应助kaixinjh1234采纳,获得10
3秒前
MiaJ完成签到 ,获得积分10
4秒前
Xenia应助柔弱芷珊采纳,获得10
6秒前
777完成签到 ,获得积分10
6秒前
7秒前
摆烂昊发布了新的文献求助10
7秒前
7秒前
王张李高应助ninika采纳,获得10
7秒前
汉堡包应助美满的冬卉采纳,获得10
8秒前
洋子完成签到 ,获得积分10
8秒前
博士二三事完成签到,获得积分10
8秒前
顾暖发布了新的文献求助10
10秒前
打打应助yzm采纳,获得10
10秒前
佐为完成签到 ,获得积分10
12秒前
宋正平完成签到,获得积分10
13秒前
13秒前
16秒前
韩十四完成签到,获得积分10
16秒前
16秒前
勤奋新晴发布了新的文献求助10
17秒前
17秒前
共享精神应助江湖笑采纳,获得10
18秒前
bkagyin应助ycy采纳,获得10
19秒前
研友_LMg3PZ完成签到,获得积分10
19秒前
微微发布了新的文献求助10
19秒前
超人完成签到,获得积分10
20秒前
毛豆应助迷你的雅霜采纳,获得10
22秒前
弈天完成签到,获得积分10
22秒前
田様应助乐乐采纳,获得10
24秒前
24秒前
小蘑菇应助孟祥勤采纳,获得10
25秒前
摆烂昊完成签到,获得积分20
26秒前
27秒前
咖啡味椰果完成签到 ,获得积分10
27秒前
笑破果果完成签到 ,获得积分10
27秒前
yzm完成签到,获得积分10
29秒前
英俊的铭应助四喜采纳,获得10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092