How Can One Metal Power Nucleic Acid Phosphodiester Bond Cleavage by a Nuclease? Multiscale Computational Studies Highlight a Diverse Mechanistic Landscape

磷酸二酯键 核酸酶 核酸 化学 亲核细胞 键裂 组合化学 分子力学 立体化学 劈理(地质) DNA 分子动力学 核糖核酸 生物化学 计算化学 催化作用 生物 古生物学 断裂(地质) 基因
作者
Dylan J. Nikkel,Rajwinder Kaur,Stacey D. Wetmore
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c05875
摘要

Despite the remarkable resistance of the nucleic acid phosphodiester backbone to degradation affording genetic stability, the P–O bond must be broken during DNA repair and RNA metabolism, among many other critical cellular processes. Nucleases are powerful enzymes that can enhance the uncatalyzed rate of phosphodiester bond cleavage by up to ∼1017-fold. Despite the most well accepted hydrolysis mechanism involving two metals (MA2+ to activate a water nucleophile and MB2+ to stabilize the leaving group), experimental evidence suggests that some nucleases can use a single metal to facilitate the chemical step, a controversial concept in the literature. The present perspective uses the case studies of four nucleases (I-PpoI, APE1, and bacterial and human EndoV) to highlight how computational approaches ranging from quantum mechanical (QM) cluster models to molecular dynamics (MD) simulations and combined quantum mechanics-molecular mechanics (QM/MM) calculations can reveal the atomic level details necessary to understand how a nuclease can use a single metal to facilitate this difficult chemistry. The representative nucleases showcase how different amino acid residues (e.g., histidine, aspartate) can fulfill the role of the first metal (MA2+) in the two-metal-mediated mechanisms. Nevertheless, differences in active site architectures afford diversity in the single-metal-mediated mechanism in terms of the metal–substrate coordination, the role of the metal, and the identities of the general acid and base. The greater understanding of the catalytic mechanisms of nucleases obtained from the body of work reviewed can be used to further explore the progression of diseases associated with nuclease (mis)activity and the development of novel nuclease applications such as disease diagnostics, gene engineering, and therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
訫乐完成签到,获得积分10
刚刚
2秒前
4秒前
zjq发布了新的文献求助10
4秒前
悄悄.完成签到,获得积分10
5秒前
华青ww完成签到,获得积分10
6秒前
李健的小迷弟应助chang采纳,获得10
6秒前
李健应助碎月采纳,获得10
6秒前
7秒前
思恩Shen完成签到,获得积分20
8秒前
万能图书馆应助飞跃采纳,获得10
9秒前
10秒前
虎虎生威完成签到,获得积分10
13秒前
14秒前
yanmh完成签到,获得积分10
14秒前
图图完成签到 ,获得积分10
14秒前
15秒前
ming发布了新的文献求助10
16秒前
小雯钱来完成签到,获得积分10
17秒前
杳鸢应助dzjin采纳,获得10
18秒前
18秒前
碎月发布了新的文献求助10
20秒前
20秒前
隐形曼青应助FJ采纳,获得10
21秒前
23秒前
hzx完成签到,获得积分10
24秒前
坚强丹雪完成签到,获得积分10
24秒前
111完成签到 ,获得积分10
25秒前
周冬华发布了新的文献求助10
25秒前
科目三应助兔兔采纳,获得10
25秒前
丰知然应助Bunny采纳,获得10
26秒前
无花果应助碎月采纳,获得10
26秒前
重要铃铛完成签到 ,获得积分10
28秒前
28秒前
所所应助早川秋Akaiii采纳,获得10
29秒前
虎虎生威发布了新的文献求助10
29秒前
ok完成签到,获得积分10
32秒前
田様应助whisper采纳,获得10
33秒前
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292341
求助须知:如何正确求助?哪些是违规求助? 2928648
关于积分的说明 8438021
捐赠科研通 2600684
什么是DOI,文献DOI怎么找? 1419216
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921