How Can One Metal Power Nucleic Acid Phosphodiester Bond Cleavage by a Nuclease? Multiscale Computational Studies Highlight a Diverse Mechanistic Landscape

磷酸二酯键 核酸酶 核酸 化学 亲核细胞 键裂 组合化学 分子力学 立体化学 劈理(地质) DNA 分子动力学 核糖核酸 生物化学 计算化学 催化作用 生物 古生物学 断裂(地质) 基因
作者
Dylan J. Nikkel,Rajwinder Kaur,Stacey D. Wetmore
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c05875
摘要

Despite the remarkable resistance of the nucleic acid phosphodiester backbone to degradation affording genetic stability, the P–O bond must be broken during DNA repair and RNA metabolism, among many other critical cellular processes. Nucleases are powerful enzymes that can enhance the uncatalyzed rate of phosphodiester bond cleavage by up to ∼1017-fold. Despite the most well accepted hydrolysis mechanism involving two metals (MA2+ to activate a water nucleophile and MB2+ to stabilize the leaving group), experimental evidence suggests that some nucleases can use a single metal to facilitate the chemical step, a controversial concept in the literature. The present perspective uses the case studies of four nucleases (I-PpoI, APE1, and bacterial and human EndoV) to highlight how computational approaches ranging from quantum mechanical (QM) cluster models to molecular dynamics (MD) simulations and combined quantum mechanics-molecular mechanics (QM/MM) calculations can reveal the atomic level details necessary to understand how a nuclease can use a single metal to facilitate this difficult chemistry. The representative nucleases showcase how different amino acid residues (e.g., histidine, aspartate) can fulfill the role of the first metal (MA2+) in the two-metal-mediated mechanisms. Nevertheless, differences in active site architectures afford diversity in the single-metal-mediated mechanism in terms of the metal–substrate coordination, the role of the metal, and the identities of the general acid and base. The greater understanding of the catalytic mechanisms of nucleases obtained from the body of work reviewed can be used to further explore the progression of diseases associated with nuclease (mis)activity and the development of novel nuclease applications such as disease diagnostics, gene engineering, and therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lele关注了科研通微信公众号
2秒前
可爱的函函应助MW采纳,获得10
2秒前
浅渊发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助Hq采纳,获得10
3秒前
不吃蛋黄发布了新的文献求助10
3秒前
飞飞飞发布了新的文献求助10
5秒前
7秒前
麻瓜小韩发布了新的文献求助10
8秒前
云野完成签到,获得积分10
9秒前
9秒前
刺1656发布了新的文献求助10
9秒前
可爱的函函应助空山新雨采纳,获得10
11秒前
哎呀呀发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
Steven发布了新的文献求助10
13秒前
lll关注了科研通微信公众号
14秒前
14秒前
14秒前
echo发布了新的文献求助10
15秒前
Hq完成签到,获得积分20
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI5应助8888拉采纳,获得50
16秒前
美满眼神发布了新的文献求助10
18秒前
18秒前
今后应助不吃蛋黄采纳,获得30
18秒前
wyy发布了新的文献求助10
19秒前
19秒前
110发布了新的文献求助10
19秒前
权归尘发布了新的文献求助20
20秒前
20秒前
今后应助风趣的老太采纳,获得10
20秒前
随遇而安应助儒雅的菲鹰采纳,获得20
20秒前
vivian发布了新的文献求助10
21秒前
yydragen应助Adzuki0812采纳,获得20
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452