Sharing Control Knowledge Among Heterogeneous Intersections: A Distributed Arterial Traffic Signal Coordination Method Using Multi-Agent Reinforcement Learning

强化学习 计算机科学 控制(管理) 交通信号灯 信号(编程语言) 知识共享 多智能体系统 分布式计算 人机交互 人工智能 知识管理 实时计算 程序设计语言
作者
Hong Zhu,J. H. Feng,Fengmei Sun,Keshuang Tang,Di Zang,Qi Kang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:1
标识
DOI:10.1109/tits.2024.3521514
摘要

Treating each intersection as basic agent, multi-agent reinforcement learning (MARL) methods have emerged as the predominant approach for distributed adaptive traffic signal control (ATSC) in multi-intersection scenarios, such as arterial coordination. MARL-based ATSC currently faces two challenges: disturbances from the control policies of other intersections may impair the learning and control stability of the agents; and the heterogeneous features across intersections may complicate coordination efforts. To address these challenges, this study proposes a novel MARL method for distributed ATSC in arterials, termed the Distributed Controller for Heterogeneous Intersections (DCHI). The DCHI method introduces a Neighborhood Experience Sharing (NES) framework, wherein each agent utilizes both local data and shared experiences from adjacent intersections to improve its control policy. Within this framework, the neural networks of each agent are partitioned into two parts following the Knowledge Homogenizing Encapsulation (KHE) mechanism. The first part manages heterogeneous intersection features and transforms the control experiences, while the second part optimizes homogeneous control logic. Experimental results demonstrate that the proposed DCHI achieves efficiency improvements in average travel time of over 30% compared to traditional methods and yields similar performance to the centralized sharing method. Furthermore, vehicle trajectories reveal that DCHI can adaptively establish green wave bands in a distributed manner. Given its superior control performance, accommodation of heterogeneous intersections, and low reliance on information networks, DCHI could significantly advance the application of MARL-based ATSC methods in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时来运转发布了新的文献求助10
1秒前
2秒前
2秒前
不想学习发布了新的文献求助10
4秒前
摸鱼仙人完成签到,获得积分10
5秒前
pxy发布了新的文献求助10
5秒前
Ma_J完成签到 ,获得积分10
5秒前
隐形曼青应助mm采纳,获得10
6秒前
W_ISSAC完成签到,获得积分10
6秒前
在水一方应助科研Mayormm采纳,获得10
6秒前
时来运转完成签到,获得积分10
6秒前
科研通AI5应助陨yue采纳,获得10
6秒前
不安的煜城完成签到,获得积分10
7秒前
jayliu发布了新的文献求助10
8秒前
Kiyoi发布了新的文献求助10
9秒前
阳光土豆完成签到,获得积分20
9秒前
高手中的糕手完成签到,获得积分10
9秒前
烟花应助ll采纳,获得10
10秒前
Starry发布了新的文献求助10
10秒前
冷傲的道罡完成签到,获得积分10
11秒前
11秒前
完美世界应助吕吕吕采纳,获得10
11秒前
jia完成签到,获得积分10
11秒前
11秒前
11秒前
七月完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
忧郁含海完成签到,获得积分10
13秒前
pxy完成签到,获得积分10
13秒前
激昂的幻梦完成签到,获得积分10
14秒前
rx发布了新的文献求助10
15秒前
Kiyoi完成签到,获得积分10
15秒前
疯狂的向日葵完成签到,获得积分10
15秒前
聂鸿发布了新的文献求助10
15秒前
我是生信小菜鸟完成签到,获得积分10
15秒前
wangyf完成签到,获得积分10
16秒前
冰西瓜最棒_完成签到,获得积分10
16秒前
可爱半凡发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767694
求助须知:如何正确求助?哪些是违规求助? 3312340
关于积分的说明 10163291
捐赠科研通 3027644
什么是DOI,文献DOI怎么找? 1661614
邀请新用户注册赠送积分活动 794172
科研通“疑难数据库(出版商)”最低求助积分说明 756013