Topological Data Analysis in Graph Neural Networks: Surveys and Perspectives

拓扑数据分析 深度学习 计算机科学 代表(政治) 人工神经网络 功率图分析 图形 拓扑(电路) 机器学习 人工智能 理论计算机科学 数学 组合数学 算法 政治 法学 政治学
作者
Phu Pham,Quang‐Thinh Bui,Ngoc Thanh Nguyen,Róbert Kozma,Philip S. Yu,Bay Vo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 9758-9776 被引量:13
标识
DOI:10.1109/tnnls.2024.3520147
摘要

For many years, topological data analysis (TDA) and deep learning (DL) have been considered separate data analysis and representation learning approaches, which have nothing in common. The root cause of this challenge comes from the difficulties in building, extracting, and integrating TDA constructs, such as barcodes or persistent diagrams, within deep neural network architectures. Therefore, the powers of these two approaches are still on their islands and have not yet combined to form more powerful tools for dealing with multiple complex data analysis tasks. Fortunately, we have witnessed several remarkable attempts to integrate DL-based architectures with topological learning paradigms in recent years. These topology-driven DL techniques have notably improved data-driven analysis and mining problems, especially within graph datasets. Recently, graph neural networks (GNNs) have emerged as a popular deep neural architecture, demonstrating significant performance in various graph-based analysis and learning problems. Explicitly, within the manifold paradigm, the graph is naturally considered as a topological object (e.g., the topological properties of the given graph can be represented by the edge weights). Therefore, integrating TDA and GNN is considered an excellent combination. Many well-known studies have recently presented the effectiveness of TDA-assisted GNN-based architectures in dealing with complex graph-based data representation analysis and learning problems. Motivated by the successes of recent research, we present systematic literature about this nascent and promising research direction in this article, which includes general taxonomy, preliminaries, and recently proposed state-of-the-art topology-driven GNN models and perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHY完成签到 ,获得积分10
1秒前
出水芙蓉完成签到,获得积分10
1秒前
小达人完成签到 ,获得积分10
1秒前
丘比特应助江海客采纳,获得10
3秒前
Ashore完成签到,获得积分10
3秒前
4秒前
阿巴阿巴发布了新的文献求助10
4秒前
陈锦鲤完成签到 ,获得积分10
4秒前
研友_Z119gZ完成签到 ,获得积分10
4秒前
我是大皇帝完成签到 ,获得积分10
5秒前
科研通AI2S应助sunmeng采纳,获得10
5秒前
5秒前
6秒前
铁柱完成签到,获得积分10
7秒前
逆袭者完成签到,获得积分10
7秒前
lx完成签到,获得积分10
7秒前
DrCuiTianjin完成签到 ,获得积分0
7秒前
wang完成签到 ,获得积分10
7秒前
小白羊完成签到,获得积分10
7秒前
小马甲应助刘星宇采纳,获得10
7秒前
轻松的曼凡完成签到,获得积分10
8秒前
luoluo完成签到,获得积分10
8秒前
我不到啊完成签到 ,获得积分10
8秒前
老宇完成签到,获得积分10
8秒前
做实验太菜完成签到,获得积分10
9秒前
左丘芷卉完成签到,获得积分10
9秒前
liguanyu1078完成签到,获得积分10
9秒前
zzz发布了新的文献求助10
9秒前
在我梦里绕完成签到,获得积分10
9秒前
gudujian870928完成签到,获得积分10
9秒前
我思故我在完成签到,获得积分10
10秒前
斯文败类应助G_G采纳,获得10
10秒前
hanqing完成签到,获得积分20
10秒前
欣慰的天奇完成签到,获得积分20
11秒前
帅气羊发布了新的文献求助10
11秒前
超帅从彤完成签到,获得积分10
12秒前
哭泣的平蝶完成签到,获得积分10
12秒前
正己化人应助569402865采纳,获得10
12秒前
小冠军完成签到,获得积分0
12秒前
xinanan完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349