亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Topological Data Analysis in Graph Neural Networks: Surveys and Perspectives

拓扑数据分析 深度学习 计算机科学 代表(政治) 人工神经网络 功率图分析 图形 拓扑(电路) 机器学习 人工智能 理论计算机科学 数学 组合数学 算法 政治 政治学 法学
作者
Phu Pham,Quang‐Thinh Bui,Ngoc Thanh Nguyen,Róbert Kozma,Philip S. Yu,Bay Vo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:9
标识
DOI:10.1109/tnnls.2024.3520147
摘要

For many years, topological data analysis (TDA) and deep learning (DL) have been considered separate data analysis and representation learning approaches, which have nothing in common. The root cause of this challenge comes from the difficulties in building, extracting, and integrating TDA constructs, such as barcodes or persistent diagrams, within deep neural network architectures. Therefore, the powers of these two approaches are still on their islands and have not yet combined to form more powerful tools for dealing with multiple complex data analysis tasks. Fortunately, we have witnessed several remarkable attempts to integrate DL-based architectures with topological learning paradigms in recent years. These topology-driven DL techniques have notably improved data-driven analysis and mining problems, especially within graph datasets. Recently, graph neural networks (GNNs) have emerged as a popular deep neural architecture, demonstrating significant performance in various graph-based analysis and learning problems. Explicitly, within the manifold paradigm, the graph is naturally considered as a topological object (e.g., the topological properties of the given graph can be represented by the edge weights). Therefore, integrating TDA and GNN is considered an excellent combination. Many well-known studies have recently presented the effectiveness of TDA-assisted GNN-based architectures in dealing with complex graph-based data representation analysis and learning problems. Motivated by the successes of recent research, we present systematic literature about this nascent and promising research direction in this article, which includes general taxonomy, preliminaries, and recently proposed state-of-the-art topology-driven GNN models and perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
15秒前
16秒前
研友_8RyzBZ发布了新的文献求助10
19秒前
20秒前
ding应助甜美的起眸采纳,获得10
30秒前
ZTLlele完成签到 ,获得积分10
40秒前
41秒前
大个应助南草北树采纳,获得10
53秒前
可靠诗筠完成签到 ,获得积分10
1分钟前
SciGPT应助Efaith采纳,获得10
1分钟前
1分钟前
zhou发布了新的文献求助10
1分钟前
千早爱音应助科研通管家采纳,获得20
1分钟前
YU完成签到 ,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
Efaith发布了新的文献求助10
1分钟前
Efaith完成签到,获得积分20
1分钟前
dddd完成签到,获得积分10
2分钟前
青柚完成签到 ,获得积分10
2分钟前
星辰大海应助xiaoxiao采纳,获得10
2分钟前
2分钟前
2分钟前
阿巴阿巴发布了新的文献求助30
2分钟前
子平完成签到 ,获得积分0
3分钟前
灵剑山完成签到 ,获得积分10
3分钟前
yf完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
千早爱音应助科研通管家采纳,获得20
3分钟前
思源应助研友_8RyzBZ采纳,获得10
3分钟前
3分钟前
Zefinity完成签到,获得积分10
3分钟前
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
研友_8RyzBZ完成签到,获得积分20
4分钟前
卧镁铀钳完成签到 ,获得积分10
4分钟前
阿巴阿巴完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770