Topological Data Analysis in Graph Neural Networks: Surveys and Perspectives

拓扑数据分析 深度学习 计算机科学 代表(政治) 人工神经网络 功率图分析 图形 拓扑(电路) 机器学习 人工智能 理论计算机科学 数学 组合数学 算法 政治 政治学 法学
作者
Phu Pham,Quang‐Thinh Bui,Ngoc Thanh Nguyen,Róbert Kozma,Philip S. Yu,Bay Vo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:6
标识
DOI:10.1109/tnnls.2024.3520147
摘要

For many years, topological data analysis (TDA) and deep learning (DL) have been considered separate data analysis and representation learning approaches, which have nothing in common. The root cause of this challenge comes from the difficulties in building, extracting, and integrating TDA constructs, such as barcodes or persistent diagrams, within deep neural network architectures. Therefore, the powers of these two approaches are still on their islands and have not yet combined to form more powerful tools for dealing with multiple complex data analysis tasks. Fortunately, we have witnessed several remarkable attempts to integrate DL-based architectures with topological learning paradigms in recent years. These topology-driven DL techniques have notably improved data-driven analysis and mining problems, especially within graph datasets. Recently, graph neural networks (GNNs) have emerged as a popular deep neural architecture, demonstrating significant performance in various graph-based analysis and learning problems. Explicitly, within the manifold paradigm, the graph is naturally considered as a topological object (e.g., the topological properties of the given graph can be represented by the edge weights). Therefore, integrating TDA and GNN is considered an excellent combination. Many well-known studies have recently presented the effectiveness of TDA-assisted GNN-based architectures in dealing with complex graph-based data representation analysis and learning problems. Motivated by the successes of recent research, we present systematic literature about this nascent and promising research direction in this article, which includes general taxonomy, preliminaries, and recently proposed state-of-the-art topology-driven GNN models and perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ky完成签到,获得积分10
刚刚
1秒前
FashionBoy应助苏苏没有可乐采纳,获得10
1秒前
不敢装睡完成签到,获得积分10
4秒前
伊笙完成签到 ,获得积分0
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
玺青一生完成签到 ,获得积分10
10秒前
高速旋转老沁完成签到 ,获得积分10
14秒前
凉拌冰阔落完成签到 ,获得积分10
14秒前
郑zhenglanyou完成签到 ,获得积分10
15秒前
沉静的清涟完成签到,获得积分10
17秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
18秒前
啊哈哈哈哈哈完成签到 ,获得积分10
19秒前
19秒前
情怀应助yyy采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
愛研究完成签到,获得积分10
26秒前
光之美少女完成签到 ,获得积分10
27秒前
微笑的若魔完成签到 ,获得积分10
28秒前
123456完成签到 ,获得积分10
29秒前
30秒前
严究生发布了新的文献求助10
32秒前
村长热爱美丽完成签到 ,获得积分10
35秒前
豆豆完成签到 ,获得积分10
37秒前
科研木头人完成签到 ,获得积分10
37秒前
38秒前
39秒前
Sleven完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
44秒前
Alisan完成签到,获得积分10
46秒前
吴总完成签到 ,获得积分10
47秒前
Ying完成签到,获得积分10
50秒前
leaolf应助科研通管家采纳,获得10
50秒前
NexusExplorer应助科研通管家采纳,获得10
50秒前
香蕉觅云应助发发旦旦采纳,获得10
52秒前
Dellamoffy完成签到,获得积分10
52秒前
飞快的冰淇淋完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605