Preparation-Dependent Photocatalytic Hydrogen Evolution by Organic Semiconducting Nanoparticles

光催化 纳米颗粒 材料科学 纳米技术 化学工程 化学 催化作用 有机化学 工程类
作者
Zi Goh,Andrew Dolan,Jessica M. de la Perrelle,Martyn Jevric,Xun Pan,Mats R. Andersson,David M. Huang,Tak W. Kee
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c04625
摘要

The molecular packing, intermixing, and crystallinity of organic semiconductors are crucial in determining the performance of photovoltaic and photocatalytic systems. The effects of these factors on performance have been thoroughly investigated for organic thin-film photovoltaic systems, but not for nanoparticulate organic photocatalytic systems, as the control of molecular packing has been limited and is challenging for nanoparticulate systems. Here, we investigate how the miniemulsion (ME), reprecipitation (RP), and a cold RP method affect molecular packing and, in turn, the photocatalytic performance of nanoparticles (NPs), using the nonfullerene acceptor Y6 alongside conjugated polymer donors P3HT and PIDT-T8BT. RP and cold RP-based neat Y6 NPs exhibit increased performance relative to the ME-based neat Y6 NPs due to greater exciton dissociation. The cold RP-based neat Y6 NPs produce hydrogen at a rate of 8 mmol g–1 h–1, which is similar to other previously studied high-performing catalysts, but without the need for a donor material. P3HT:Y6 NPs exhibit low photocatalytic performance, which is likely due to the high miscibility of P3HT and Y6 as well as the low mobility of holes in P3HT domains. In contrast, the PIDT-T8BT:Y6 NPs exhibit significant rates of hydrogen evolution. The RP-based PIDT-T8BT:Y6 NPs outperform the ME and cold RP-based NPs due to a higher degree of intermixing. This work highlights the need to carefully consider the NP preparation method when preparing photocatalytic systems due to its extensive and significant effect on material morphology and, in turn, performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mida应助开花不铁树采纳,获得10
1秒前
打打应助chemlink采纳,获得10
4秒前
4秒前
鱻雩关注了科研通微信公众号
6秒前
细心的思远完成签到,获得积分20
7秒前
爆米花应助ap2010采纳,获得30
7秒前
9秒前
9秒前
李健的小迷弟应助isabellae采纳,获得10
9秒前
开花不铁树完成签到,获得积分20
10秒前
11秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
11秒前
11秒前
12秒前
Criminology34应助二五九采纳,获得10
14秒前
晚星发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
星空发布了新的文献求助10
19秒前
文献发布了新的文献求助30
21秒前
22秒前
22秒前
23秒前
25秒前
26秒前
Rachel完成签到,获得积分10
27秒前
codwest完成签到,获得积分10
27秒前
28秒前
28秒前
越旻完成签到,获得积分10
29秒前
zxj完成签到,获得积分10
29秒前
29秒前
喜欢猫发布了新的文献求助10
29秒前
酷炫的爆米花完成签到,获得积分10
30秒前
李爱国应助西海沉采纳,获得10
30秒前
Orange应助方法采纳,获得10
30秒前
30秒前
沉静亿先完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690