Preparation-Dependent Photocatalytic Hydrogen Evolution by Organic Semiconducting Nanoparticles

光催化 纳米颗粒 材料科学 纳米技术 化学工程 化学 催化作用 有机化学 工程类
作者
Zi Goh,Andrew Dolan,Jessica M. de la Perrelle,Martyn Jevric,Xun Pan,Mats R. Andersson,David M. Huang,Tak W. Kee
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c04625
摘要

The molecular packing, intermixing, and crystallinity of organic semiconductors are crucial in determining the performance of photovoltaic and photocatalytic systems. The effects of these factors on performance have been thoroughly investigated for organic thin-film photovoltaic systems, but not for nanoparticulate organic photocatalytic systems, as the control of molecular packing has been limited and is challenging for nanoparticulate systems. Here, we investigate how the miniemulsion (ME), reprecipitation (RP), and a cold RP method affect molecular packing and, in turn, the photocatalytic performance of nanoparticles (NPs), using the nonfullerene acceptor Y6 alongside conjugated polymer donors P3HT and PIDT-T8BT. RP and cold RP-based neat Y6 NPs exhibit increased performance relative to the ME-based neat Y6 NPs due to greater exciton dissociation. The cold RP-based neat Y6 NPs produce hydrogen at a rate of 8 mmol g–1 h–1, which is similar to other previously studied high-performing catalysts, but without the need for a donor material. P3HT:Y6 NPs exhibit low photocatalytic performance, which is likely due to the high miscibility of P3HT and Y6 as well as the low mobility of holes in P3HT domains. In contrast, the PIDT-T8BT:Y6 NPs exhibit significant rates of hydrogen evolution. The RP-based PIDT-T8BT:Y6 NPs outperform the ME and cold RP-based NPs due to a higher degree of intermixing. This work highlights the need to carefully consider the NP preparation method when preparing photocatalytic systems due to its extensive and significant effect on material morphology and, in turn, performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samuel完成签到,获得积分10
刚刚
刚刚
BJ_whc发布了新的文献求助50
刚刚
yyds完成签到,获得积分10
刚刚
刚刚
香蕉觅云应助yyy采纳,获得30
1秒前
1秒前
顾矜应助踏实秋莲采纳,获得10
1秒前
1秒前
1秒前
2秒前
ZHANGCHAOHANG发布了新的文献求助10
2秒前
小老虎Milly完成签到,获得积分10
2秒前
平淡的火龙果完成签到,获得积分10
2秒前
悟123完成签到 ,获得积分10
2秒前
可怜的游戏完成签到,获得积分10
3秒前
glycine发布了新的文献求助10
3秒前
3秒前
3秒前
梓翔完成签到,获得积分10
3秒前
熊雅发布了新的文献求助10
4秒前
spc68应助Yuan_Gao12采纳,获得10
4秒前
zzzzzzz完成签到 ,获得积分10
4秒前
丘比特应助keyanqianjin采纳,获得10
4秒前
陌小千完成签到 ,获得积分10
4秒前
小蘑菇应助yiyi采纳,获得10
4秒前
CodeCraft应助将将将采纳,获得10
4秒前
害羞的醉卉完成签到 ,获得积分10
4秒前
5秒前
5秒前
陈少华发布了新的文献求助10
5秒前
5秒前
大盆完成签到,获得积分10
5秒前
敏感灵薇发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
鼠性社恐患者完成签到,获得积分10
6秒前
李健的小迷弟应助1234采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
旺旺完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659492
求助须知:如何正确求助?哪些是违规求助? 4828970
关于积分的说明 15087038
捐赠科研通 4818112
什么是DOI,文献DOI怎么找? 2578548
邀请新用户注册赠送积分活动 1533152
关于科研通互助平台的介绍 1491834