Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction

粒度 计算机科学 人工智能 图形 代表(政治) 机器学习 理论计算机科学 程序设计语言 政治 政治学 法学
作者
Wei Peng,Jiangzhen Lin,Wei Dai,Ning Yu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3492806
摘要

Patients with the same type of cancer often respond differently to identical drug treatments due to unique genomic traits. Accurately predicting a patient's response to drug is crucial in guiding treatment decisions, alleviating patient suffering, and improving cancer prognosis. Current computational methods utilize deep learning models trained on extensive drug screening data to predict anti-cancer drug responses based on features of cell lines and drugs. However, the interaction between cell lines and drugs is a complex biological process involving interactions across various levels, from internal cellular and drug structures to the external interactions among different molecules.To address this complexity, we propose a novel Hierarchical graph representation Learning with Multi-Granularity features (HLMG) algorithm for predicting anti-cancer drug responses. The HLMG algorithm combines features at two granularities: the overall gene expression and pathway substructures of cell lines, and the overall molecular fingerprints and substructures of drugs. Subsequently, it constructs a heterogeneous graph including cell lines, drugs, known cell line-drug responses, and the associations between similar cell lines and similar drugs. Through a graph convolutional network model, the HLMG learns the final cell line and drug representations by aggregating features of their multi-level neighbor in the heterogeneous graph. The multi-level neighbors consist of the node self, directly related drugs/cell lines, and indirectly related similar drugs/cell lines. Finally, a linear correlation coefficient decoder is employed to reconstruct the cell line-drug correlation matrix to predict anti-cancer drug responses. Our model was tested on the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) databases. Results indicate that HLMG outperforms other state-of-the-art methods in accurately predicting anti-cancer drug responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有我ID随机吗完成签到,获得积分10
刚刚
1秒前
wwww发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
halabouqii完成签到,获得积分10
3秒前
wlw发布了新的文献求助10
3秒前
汉堡包应助wyvern114采纳,获得10
3秒前
4秒前
果实发布了新的文献求助10
5秒前
英俊的铭应助赵雪采纳,获得10
6秒前
wxxz123完成签到,获得积分10
7秒前
wwww完成签到,获得积分20
7秒前
嗯嗯发布了新的文献求助10
7秒前
思源应助余吉诃德采纳,获得10
7秒前
小松鼠发布了新的文献求助30
7秒前
李健的小迷弟应助yunyii采纳,获得10
7秒前
Singularity应助迟到虞姬采纳,获得10
7秒前
LEMONS应助科研通管家采纳,获得10
8秒前
老lili完成签到,获得积分10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
cureall应助科研通管家采纳,获得10
9秒前
yookia应助科研通管家采纳,获得10
9秒前
英吹斯挺应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
村上种树完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
还我益达发布了新的文献求助10
10秒前
科研科完成签到,获得积分10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149