Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction

粒度 计算机科学 人工智能 图形 代表(政治) 机器学习 理论计算机科学 程序设计语言 政治 政治学 法学
作者
Wei Peng,Jiangzhen Lin,Wei Dai,Ning Yu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3492806
摘要

Patients with the same type of cancer often respond differently to identical drug treatments due to unique genomic traits. Accurately predicting a patient's response to drug is crucial in guiding treatment decisions, alleviating patient suffering, and improving cancer prognosis. Current computational methods utilize deep learning models trained on extensive drug screening data to predict anti-cancer drug responses based on features of cell lines and drugs. However, the interaction between cell lines and drugs is a complex biological process involving interactions across various levels, from internal cellular and drug structures to the external interactions among different molecules.To address this complexity, we propose a novel Hierarchical graph representation Learning with Multi-Granularity features (HLMG) algorithm for predicting anti-cancer drug responses. The HLMG algorithm combines features at two granularities: the overall gene expression and pathway substructures of cell lines, and the overall molecular fingerprints and substructures of drugs. Subsequently, it constructs a heterogeneous graph including cell lines, drugs, known cell line-drug responses, and the associations between similar cell lines and similar drugs. Through a graph convolutional network model, the HLMG learns the final cell line and drug representations by aggregating features of their multi-level neighbor in the heterogeneous graph. The multi-level neighbors consist of the node self, directly related drugs/cell lines, and indirectly related similar drugs/cell lines. Finally, a linear correlation coefficient decoder is employed to reconstruct the cell line-drug correlation matrix to predict anti-cancer drug responses. Our model was tested on the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) databases. Results indicate that HLMG outperforms other state-of-the-art methods in accurately predicting anti-cancer drug responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
呆瓜发布了新的文献求助10
3秒前
4秒前
wenjing发布了新的文献求助10
4秒前
4秒前
完美世界应助黄文娟采纳,获得30
5秒前
5秒前
不安又蓝完成签到 ,获得积分10
6秒前
馒头完成签到,获得积分10
6秒前
天天快乐应助周星星采纳,获得10
6秒前
cmuren99发布了新的文献求助10
7秒前
GXJ发布了新的文献求助20
8秒前
9秒前
馒头发布了新的文献求助50
11秒前
12秒前
12秒前
潜心而学完成签到,获得积分10
12秒前
12秒前
小帕发布了新的文献求助20
13秒前
14秒前
15秒前
15秒前
15秒前
whosyourdaddyva完成签到,获得积分10
17秒前
18秒前
sekidesu发布了新的文献求助10
18秒前
19秒前
20秒前
香蕉以菱发布了新的文献求助10
20秒前
斯文败类应助酷酷初之采纳,获得10
20秒前
任鲂发布了新的文献求助10
20秒前
21秒前
21秒前
申思发布了新的文献求助10
24秒前
灿烂千阳完成签到,获得积分10
25秒前
Na发布了新的文献求助10
26秒前
26秒前
27秒前
开朗又菱发布了新的文献求助10
27秒前
葡萄干完成签到,获得积分10
27秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570