Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction

粒度 计算机科学 人工智能 图形 代表(政治) 机器学习 理论计算机科学 程序设计语言 政治 政治学 法学
作者
Wei Peng,Jiangzhen Lin,Wei Dai,Ning Yu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3492806
摘要

Patients with the same type of cancer often respond differently to identical drug treatments due to unique genomic traits. Accurately predicting a patient's response to drug is crucial in guiding treatment decisions, alleviating patient suffering, and improving cancer prognosis. Current computational methods utilize deep learning models trained on extensive drug screening data to predict anti-cancer drug responses based on features of cell lines and drugs. However, the interaction between cell lines and drugs is a complex biological process involving interactions across various levels, from internal cellular and drug structures to the external interactions among different molecules.To address this complexity, we propose a novel Hierarchical graph representation Learning with Multi-Granularity features (HLMG) algorithm for predicting anti-cancer drug responses. The HLMG algorithm combines features at two granularities: the overall gene expression and pathway substructures of cell lines, and the overall molecular fingerprints and substructures of drugs. Subsequently, it constructs a heterogeneous graph including cell lines, drugs, known cell line-drug responses, and the associations between similar cell lines and similar drugs. Through a graph convolutional network model, the HLMG learns the final cell line and drug representations by aggregating features of their multi-level neighbor in the heterogeneous graph. The multi-level neighbors consist of the node self, directly related drugs/cell lines, and indirectly related similar drugs/cell lines. Finally, a linear correlation coefficient decoder is employed to reconstruct the cell line-drug correlation matrix to predict anti-cancer drug responses. Our model was tested on the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) databases. Results indicate that HLMG outperforms other state-of-the-art methods in accurately predicting anti-cancer drug responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助斯文觅珍采纳,获得10
1秒前
2秒前
沉静茗发布了新的文献求助10
3秒前
3秒前
3秒前
丸子发布了新的文献求助10
4秒前
XIL完成签到,获得积分10
4秒前
活力的箴发布了新的文献求助10
4秒前
彭于晏应助n脑子只想吃采纳,获得10
5秒前
yy123发布了新的文献求助10
5秒前
乐乐应助muyu采纳,获得10
9秒前
9秒前
9秒前
9秒前
CrazyLion完成签到,获得积分10
10秒前
热泪盈眶完成签到,获得积分10
12秒前
欢呼的初彤完成签到 ,获得积分10
12秒前
12秒前
13秒前
背后盼芙完成签到,获得积分10
13秒前
害羞耷完成签到 ,获得积分10
14秒前
莫惜君灬完成签到 ,获得积分10
15秒前
nglmy77完成签到 ,获得积分10
15秒前
朱笑白完成签到 ,获得积分10
16秒前
36456657应助魁梧的代珊采纳,获得10
17秒前
17秒前
jue发布了新的文献求助20
18秒前
lilycat发布了新的文献求助10
18秒前
18秒前
清新的绿海完成签到,获得积分10
19秒前
贝湾完成签到,获得积分10
19秒前
沉静茗完成签到,获得积分10
20秒前
美满艳完成签到,获得积分10
20秒前
20秒前
22秒前
23秒前
kdkfjaljk发布了新的文献求助10
24秒前
24秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521