Abstract PR007: Pancreatic cancer cachexia is mediated by tumor-derived PTHrP

恶病质 胰腺癌 医学 癌症恶病质 癌症 内科学 肿瘤科 癌症研究 内分泌学
作者
Jason R. Pitarresi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (22_Supplement): PR007-PR007
标识
DOI:10.1158/1538-7445.tumbody-pr007
摘要

Abstract Purpose: Our prior work has established that metastasis is initiated by PTHrP-driven mechanisms in pancreatic ductal adenocarcinoma (PDAC). PTHLH (the gene encoding the PTHrP protein) is directly adjacent to and co-amplified along with KRAS, the major oncogenic driver in PDAC patients. The KRAS-PTHLH amplicon is a marker of the highly aggressive squamous/quasi-mesenchymal/basal-like PDAC patient subtypes, is associated with increases in metastasis and cancer cachexia, and correlates with decreased overall patient survival. We have deleted Pthlh in the autochthonous Kras- and Tp53-driven pancreatic cancer mouse model (i.e. KPC mice) and found that the resulting KPC-Pthlh LoxP mice (herein KPC-PthrpcKO) live nearly twice as long as KPC controls. Intriguingly, recent evidence has emerged for PTHrP’s role in cachexia-associated adipose tissue wasting and we posit that the dramatic survival extension in KPC-PthrpcKO mice may be due to reduced cachexia. Results: In PDAC patients, PTHrP is co-amplified along with KRAS and correlates with significantly decreased overall survival. We generated KPC-PthrpcKO mice and showed that they have reduced tumor burden and dramatically increased overall survival relative to KPC controls. In parallel experiments, we treated mice with an anti-PTHrP neutralizing monoclonal antibody, which similarly extended survival. Upon further analysis, we observed that the overall body condition of KPC-PthrpcKO mice (and anti- PTHrP treated KPC mice) was greatly improved, with less loss of adipose and muscle tissue. Mechanistic studies revealed that tumor cell-derived PTHrP signaling to adipocytes in white adipose tissue depots mediates cachexia. Specifically, we found that adipose tissue wasting and lipolysis were greatly reduced upon deletion or pharmacological inhibition of PTHrP. In the same vein, RNA-seq of cachectic adipose tissue revealed that PTHrP mediates adipose wasting by turning off de novo lipogenesis (DNL), a process critical for the generation of fatty acids in adipocytes. PTHrP binds to its cognate receptor, PTH1R, on adipocytes and blocks fatty acid synthesis by turning off the essential DNL transcription factors CHREBP and SREBP, likely through a PTH1R-PKA-CREB1 signaling axis. Thus, the genetic deletion and pharmacological inhibition of PTHrP in vivo led to a profound reduction in cachexia-related adipose tissue wasting and muscle atrophy. Re-introduction of PTHrP into a PDAC cell line with low cachexia-inducing potential (and low baseline PTHrP) dramatically increased the degree of cachexia observed upon orthotopic implantation, leading to a reduction in overall survival. Therefore, PTHrP is both necessary and sufficient to induce cachexia in pancreatic cancer. Conclusions: This work has demonstrated the importance of the previously unappreciated roles of PTHrP signaling in driving pancreatic cancer cachexia and adipose tissue remodeling, and future studies will look to translate anti-PTHrP therapy into clinical trials. Citation Format: Jason Pitarresi. Pancreatic cancer cachexia is mediated by tumor-derived PTHrP [abstract]. In: Proceedings of the AACR Special Conference in Cancer Research: Tumor-body Interactions: The Roles of Micro- and Macroenvironment in Cancer; 2024 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2024;84(22_Suppl):Abstract nr PR007.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪元彤发布了新的文献求助10
刚刚
1秒前
1秒前
槐序二三完成签到,获得积分10
1秒前
枫枫829发布了新的文献求助10
3秒前
3秒前
5秒前
Cloud发布了新的文献求助50
6秒前
哲欣完成签到,获得积分10
6秒前
852应助怡宝采纳,获得10
8秒前
bei完成签到,获得积分10
10秒前
所所应助马少洋采纳,获得10
10秒前
Wudifairy完成签到,获得积分10
11秒前
研究牲完成签到,获得积分10
12秒前
墨然然完成签到 ,获得积分10
17秒前
科研小白完成签到 ,获得积分10
18秒前
Orange应助沉静尔曼采纳,获得10
18秒前
英俊的铭应助爱听歌从蓉采纳,获得10
18秒前
18秒前
麻薯头头发布了新的文献求助10
19秒前
20秒前
21秒前
阔达凝天发布了新的文献求助10
22秒前
eric888应助科研通管家采纳,获得100
22秒前
浮游应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
Hilda007应助科研通管家采纳,获得10
22秒前
23秒前
浮游应助科研通管家采纳,获得10
23秒前
23秒前
浮游应助科研通管家采纳,获得10
23秒前
如果天气好的话完成签到,获得积分10
23秒前
研究牲发布了新的文献求助10
23秒前
23秒前
Curry完成签到 ,获得积分10
23秒前
8R60d8应助拾肆采纳,获得10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296018
求助须知:如何正确求助?哪些是违规求助? 4445360
关于积分的说明 13836028
捐赠科研通 4330050
什么是DOI,文献DOI怎么找? 2376864
邀请新用户注册赠送积分活动 1372213
关于科研通互助平台的介绍 1337586