亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metaheuristic Algorithms in Optimization and its Application: A Review

元启发式 计算机科学 并行元启发式 数学优化 算法 数学 元优化
作者
Heba Mohammed Fadhil
标识
DOI:10.31972/iceit2024.013
摘要

Metaheuristic algorithms are an intelligent way of thinking and working developed for resolving diverse issues about optimization. The number of potential solutions for such problems often is too large to be properly analyzed using standard procedures; thus, these algorithms are highly flexible and can be useful in many cases where needed to predict different types of optimizations accurately. Metaheuristics take inspiration from several natural processes like evolution or animal behavior, which allow them to show strength without being specific only towards one area. Some Metaheuristics algorithms are commonly being used like : Genetic Algorithm (GA), Simulated Annealing (SA), Evolutionary Algorithm (EA), Tabu Search (TS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), and Cuckoo Search Approach (CSA). All of them derives from this initial set of solutions and employ heuristics to get from this set of solutions.. The objective of this paper is to thoroughly analyze different metaheuristic algorithms. Their principles, mechanisms and the area where they are applied and will delve into. This paper provides a qualitative analysis of these algorithmic performances in diverse settings that underscore their strong suits as well as their weaknesses. The discourse also makes mention of some specific examples like how metaheuristic algorithms find utility application in various fields which include but are not limited to engineering or computer science, even economics and healthcare later down the line receive due consideration with an eye towards specific results; showing not only how effective these individual algorithms can be when applied under differing scenarios but also pointing out areas deserving further research efforts be directed onto them.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
10秒前
菠萝菠萝哒应助andrele采纳,获得10
14秒前
等待寄松发布了新的文献求助30
29秒前
32秒前
Micheal发布了新的文献求助100
47秒前
善学以致用应助sharky采纳,获得30
56秒前
59秒前
1分钟前
專注完美近乎苛求完成签到 ,获得积分10
1分钟前
璇儿阿发布了新的文献求助10
1分钟前
1分钟前
Perion完成签到 ,获得积分10
1分钟前
天天快乐应助鱼鱼鱼采纳,获得10
1分钟前
taku完成签到 ,获得积分10
1分钟前
luffy189完成签到 ,获得积分10
1分钟前
善学以致用应助长孙随阴采纳,获得10
1分钟前
zho发布了新的文献求助10
1分钟前
深情安青应助茶茶采纳,获得10
1分钟前
Yaon-Xu完成签到,获得积分10
1分钟前
璇儿阿完成签到,获得积分10
1分钟前
1s完成签到 ,获得积分10
1分钟前
二小完成签到 ,获得积分10
1分钟前
1分钟前
CHENGRU发布了新的文献求助10
1分钟前
华仔应助Gryff采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
18340312141完成签到,获得积分10
1分钟前
2分钟前
sharky发布了新的文献求助30
2分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
Y2024发布了新的文献求助10
2分钟前
Quier完成签到,获得积分10
2分钟前
2分钟前
y915840635完成签到 ,获得积分10
2分钟前
充电宝应助Quier采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388363
求助须知:如何正确求助?哪些是违规求助? 3000757
关于积分的说明 8793583
捐赠科研通 2686858
什么是DOI,文献DOI怎么找? 1471861
科研通“疑难数据库(出版商)”最低求助积分说明 680663
邀请新用户注册赠送积分活动 673298