已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unlocking the Nitrogen Reduction Electrocatalyst with a Dual-Metal–Boron System: From High-Throughput Screening to Machine Learning

材料科学 催化作用 电催化剂 石墨烯 氧化还原 过渡金属 金属 化学工程 电化学 无机化学 纳米技术 物理化学 电极 化学 有机化学 工程类 冶金
作者
Chen Chen,Yi Liu,Xue-fang Yu,Zhongwei Li,Wenzuo Li,Qingzhong Li,Xiaolong Zhang,Bo Xiao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c15263
摘要

Recently, dual-metal catalysts have attracted much attention due to their abundant active sites and tunable chemical properties. On the other hand, metal borides have been widely applied in splitting the inert chemical bonds in small molecules (such as N2) because of their excellent catalytic performances. As a combination of the above two systems, in this work, 11 kinds of transition metal atoms (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and W) were selected to embed in boron-doped graphene (BG) to construct 66 dual-metal–boron systems, and their performances toward the N2 reduction reaction (NRR) were examined using first-principles simulations. Our results revealed that such a dual-TM@BG system exhibits excellent thermodynamic and electrochemical stabilities, which facilitate the experimental synthesis. In particular, Fe–Fe- and Fe–Co-doped BG exhibit excellent performance for NRR, with the limiting potentials of −0.29 and −0.32 V, respectively, and both of them exhibit inhibitory effects on the H2 evolution reaction. Remarkably, the microkinetic modeling analysis revealed that the turnover frequency for the NH3 production on FeFe@BG reaches up to 7.27 × 108 s–1 site–1 at 700 K and 100 bar, which further confirms its ultrafast reaction rate. In addition, the machine learning method was employed to further understand the catalytic mechanism, and it is found that the NRR performances of dual-TM@BG catalysts are closely related to the sum of radii of two TM atoms. Therefore, our work not only proposed two promising electrocatalysts for NRR but also verified the feasibility for the application of a dual-metal–boron system in NRR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
学术废物完成签到 ,获得积分10
3秒前
3秒前
4秒前
卫子善发布了新的文献求助10
5秒前
fang完成签到 ,获得积分10
5秒前
科研通AI2S应助王木木采纳,获得10
6秒前
高山七石发布了新的文献求助10
7秒前
无谓发布了新的文献求助10
9秒前
Maomaoya发布了新的文献求助10
10秒前
完美时间线完成签到,获得积分10
11秒前
12秒前
泡泡儿完成签到 ,获得积分10
14秒前
华仔应助无谓采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
脑洞疼应助Sherry采纳,获得10
19秒前
20秒前
20秒前
LJH完成签到,获得积分20
20秒前
yu777完成签到,获得积分10
20秒前
20秒前
正直敏完成签到,获得积分10
21秒前
23秒前
123456发布了新的文献求助10
24秒前
Gufer完成签到,获得积分10
24秒前
blue发布了新的文献求助10
25秒前
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
相识完成签到,获得积分10
27秒前
博雅完成签到,获得积分10
29秒前
橘猫爱笑完成签到 ,获得积分10
29秒前
30秒前
小二郎应助blueweier采纳,获得10
30秒前
30秒前
希望天下0贩的0应助justice采纳,获得10
32秒前
子车茗应助123456采纳,获得20
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153