微塑料
生物降解
土霉素
污染物
吸附
淀粉
环境化学
废物管理
化学
生物可分解塑胶
制浆造纸工业
环境科学
食品科学
有机化学
抗生素
工程类
生物化学
作者
Liuyu Chen,Ying Sun,Xuejiang Wang,Siqing Xia,Jianfu Zhao
标识
DOI:10.1016/j.envpol.2024.125538
摘要
With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.65% to 35.82%. The starch's degradation in PPT altered its thermal properties. Microbial colonization on PPT (B-PPT) enhanced Cu(II) and OTC adsorption, while biodegradation (D-PPT) reduced their adsorption. Reduced surface carbonyl and hydroxyl groups, alongside increased crystallinity, diminished D-PPT's Cu(II) adsorption. While OTC adsorption, driven by hydrophobic partitioning, was less affected by biodegradation. In the binary pollutant system, the Cu(II) and OTC adsorption of D-PPT increased by 20.27% and 8.63 times, respectively; B-PPT showed decreased adsorption of both. Coexisting organic matter and pH significantly affected PPT's adsorption behavior by altering Cu(II) and OTC speciation, and influencing adsorption competition, hydrogen bonding and bridging effects. This study is the first to explore biodegradation impacts of commercial starch-based microplastics on typical heavy metals and antibiotics adsorption, providing important theoretical insights for understanding their environmental risks.
科研通智能强力驱动
Strongly Powered by AbleSci AI